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Povzetek
Fazno občutljiva mikroskopija je družina metod, ki brez uporabe barvil ali ~uore-
scence omogočajo slikanje prozornih objektov. V seminarju opišemo mehanizem
metode faznega kontrasta, nato pa manj podrobno še družino interferometrijskih
metod. Predstavimo tudi idejo kvantitativnega faznega slikanja, vključno s ne-
katerimi trendi v razvoju metod. Za konec predstavimo dva primera uporabe
teh metod v medicini.
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1 Uvod
Raziskovanje v biologiji in medicini je pogojeno z orodji, ki so raziskovalcem na voljo
za opazovanje življenjskih procesov. Izziv postavlja dejstvo, da je večina živalskih celic
prozornih – svetlobe ne absorbirajo – in jih posledično s klasično presevno mikroskopijo
ne moremo opazovati (glej sliko 1). V splošnem takim prozornim objektom pravimo fazni
objekti, saj vplivajo le na fazo svetlobe.

Za opazovanje lahko prozornim celicam dodamo barvilo, ki svetlobo absorbira1. Dol-
gotrajno opazovanje živih celic omejuje, da so barvila za celice pogosto toksična. Metode
fazno občutljivega slikanje tu predstavljajo dobro alternativo, saj omogočajo, da prozorne
celice opazujemo brez uporabe barvil.

Za delovanje metod je ključna informacija, ki jo o opazovanem objektu nosi faza sve-
tlobnega valovanja. Celica, ki jo opazujemo, je vsebovana v mediju z lomnim količnikom
n0. Če ima tedaj celica lomni količnik različen od medija, bo žarek, ki potuje skozi celico,
pridobil fazni zamik oz. optično debelino2

ϕ =
2π

λ

∫

∆n(z) dz,

1V mnogih modernih metodah je barvilo pravzaprav ~uorescenčno, torej svetlobe ne absorbira, ampak
jo oddaja.

2Optična debelina se tipično uporablja za vrednost eksponenta τ za prehod skozi kos absorpcijskega
materiala, v katerem se signal zmanjša za faktor eτ . V našem primeru je τ imaginarno število iϕ, z
izrazom optična debelina pa bomo označevali kar sam ϕ.
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Slika 1: Primerjava med presevnimi mikroskopskimi slikami (na levi) in slikami, posnetimi
s faznim kontrastom (na desni). Posnete so bele krvne celice in bakterije, večji objekti pa
so t. i. hyalinske tubule (ang. hyaline casts). Slike vzete iz [1].

pri čemer je λ valovna dolžina svetlobe, razliko ∆n(z) = n(z) − n0 pa imenujemo za
inkrement lomnega količnika (ang. refractive index increment). Ker je v celicah lomni
inkrement sorazmeren s koncentracijo suhe snovi (več v poglavju 4.1), lahko s površinsko
integracijo ϕ izračunamo celično maso.

V nadaljevanju bomo opisali in razložili dve izmed fazno občutljivih metod – prvo
metodo faznega kontrasta v odseku 2, nato pa v odseku 3 še metodo mikroskopije DIC.
V odseku 4 nato predstavimo nadgradnjo z metodami kvantitativne faze, za konec pa v 5
prestavimo še dva primera uporabe fazno občutljivih metod.

2 Fazni kontrast
Fazni kontrast je metoda fazno občutljivega slikanja, ki jo je v 30. letih prejšnjega stoletja
razvil Frits Zernike, ko se je eksperimentalno in teoretično ukvarjal z uklonskimi mrežica-
mi [2]. Mehanizem je izjemno eleganten in predstavlja plod globokega razumevanja }zike
uklona. Za razvoj metode je Zernike leta 1953 prejel tudi Nobelovo nagrado.

Najprej bomo mehanizem razložili na nekaj analitično izračunljivih primerih, kot je
to izvorno predstavil Zernike v [3, 4], nato pa nekaj povedali še o primeru kompleksnega
faznega objekta.

2.1 Uklon skozi odprtino
Preden mehanizem lahko razumemo, moramo povedati nekaj o uklonu skozi zbiralno lečo,
npr. objektiv mikroskopa. Da to izpeljemo, začnemo s klasičnim uklonom na odprtini, ki
ga opisuje Fresnel-Kirchhozov uklonski integral

u(P) = −i
u0

2λ

∫

A

eik(r+s)

rs

[

cos(n, r)− cos(n, s)
]

dS. (1)

Integral opisuje uklon na odprtini za točkovni vir v P0 (glej sliko 2), z valovno dolžino
λ in amplitudo u0. Razdalja r meri od izvora P0 do točke na odprtini, razdalja s pa od
točke na odprtini A do opazovalca P. S k označimo valovno število k = 2π/λ.

Uklonski integral v tej obliki izpeljemo (glej [5], stran 421) kot poseben primer Kir-
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Slika 2: Krogelni val izvira v P0 in potuje skozi odprtino A. Pri tem se ukloni, uklonjeni
val pa opazujemo v točki P. Valovanje v P obravnavamo kot interferenco sekundarnih
valov, ki izvirajo na površini valovne fronte.

chhozovega integralskega izreka

u(P) = 1

4π

∮

S

[

u
∂

∂n

(

eiks

s

)

−
eiks

s

∂u

∂n

]

dS, (2)

ki podaja rešitev valovne enačbe kot integral po zaprti površini S okoli P. Izračunamo
ga iz vhodnega vala, katerega vrednosti na odprtini poznamo. Za postavitev na sliki 2 je
vhodni val krogelna valovna fronta točkovnega izvora v P0, oblike

u(r) = u0
eikr

r
, (3)

uklon pa opisuje integral (1), ki poteka po površini uklonske odprtine. Integral lahko
pravzaprav poteka po poljubni izmed površin, ki uklonsko odprtino zapirajo.

Uklonski integral v točni obliki bomo nadomestili s približkom Fraunhoferjevega uklo-
na, ki velja, če je največji premer odprtine mnogo manjši od razdalje dmax � |P−P0|. V
postavitvi na sliki 2 velja v takem približku

cos(n, r)− cos(n, s) ≈ 2 cosϑ, (4)

pri čemer je ϑ kot med normalo na površino integracije n in vektorjem, ki kaže od vira
k opazovalcu. Sedaj se nam splošen uklonski integral 1 poenostavi v integral za t. i.
Fraunhoferjev uklon

u(P) ≈ −i
u0

λ

(

cosϑ
r0s0

)
∫

A

eik(r+s)dS. (5)

Dodatno smo iz integrala izpostavili faktor 1/rs, ki se pri sprehodu čez odprtino mini-
malno spreminja. Lahko ga zamenjamo s konstanto 1/r0s0, pri čemer sta r0 in s0 dolžini
vektorjev r in s pri (ξ, η) = 0.

Integral bomo v nadaljevanju naprej poenostavili. V ta namen bomo razdalji r in s

razvili do drugega reda po kordinatah ξ, η. Če so koordinate opazovalca P = (x, y, z) in
koordinate vira P0 = (x0, y0, z0), lahko razdalji zapišemo in razvijemo do drugega reda
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r =
√

(x0 − ξ)2 + (y0 − η)2 + z20 ≈ r0 +
x0ξ + y0η

r0
+

[

ξ2 + η2

2r0
−

(x0ξ + y0η)
2

2r30

]

, (6)

s =
√

(x− ξ)2 + (y − η)2 + z2 ≈ s0 +
xξ + yη

s0
+

[

ξ2 + η2

2s0
−

(xξ + yη)2

2s30

]

, (7)

Zanima nas pogoj, pri katerem lahko pri integraciji po odprtini upoštevamo le prvi
red odvisnosti razdalj r in s. Neposredno iz razvoja razdalj to velja, ko je

1

2
k

∣

∣

∣

∣

(

1

r0
+

1

s0

)

(ξ2 + η2)−
(p0ξ + q0η)

2

r0
−

(pξ + qη)2

s0

∣

∣

∣

∣

� 2π (8)

pri čemer so p0, q0, p, q smerni sinusi odklona vektorjev r, s od optične osi p0 := x0

r0
,

p := x
s0

, q0 := y0
r0

in q := y

s0
. Pogoj gotovo velja, če smo na dovolj veliki razdalji

r0 �
d2max
4λ

, s0 �
d2max
4λ

, (9)

pri čemer je (dmax/2)
2 = (ξ2 + η2)max. Prvi red pa je zadosten približek tudi v nekoliko

bolj zanimivem primeru. Po trikotniški neenakosti in dejstvu, da so vsi smerni sinusi
absolutno manjši od 1, je drugi red zanemarljiv tudi v primeru

p20, q
2
0, p

2, q2 �
4r0λ

d2max
,

1

r0
+

1

s0
= 0. (10)

Prvi pogoj preprosto zahteva, da je kot z optično osjo majhen. Drugemu pogoju pa v
trenutni postavitvi temu ni mogoče zadostiti, saj je razdalja nenegativna količina.

2.2 Uklon skozi zbiralno lečo
Vprašamo se, ali je lahko drugi izmed pogojev (10) vseeno izpolnjen. Spominja nas namreč
na enačbo leče, v kateri so razdalje lahko tudi predznačene. In res bomo v nadaljevanju
spoznali, da je pogoj izpolnjen, če namesto uklona krogelnega vala na odprtini gledamo
interferenčno sliko v goriščni ravnini zbiralne leče, npr. objektiva v mikroskopu.

Na sliki 3 gledamo odprtino z lečo in objekt zaenkrat odmislimo. Predstavljajmo si
uklon, ki je posledica sekundarnih valov, izsevanih iz krogelne valovne fronte s središčem
v P0. Ta fronta nastane pri lomu ravnega vala osvetlitve, ki vpada pravokotno na lečo in
konvergira proti gorišču v P0.

V tem primeru P0 ni več točka izvora, temveč točka konvergence. Valovna fronta se v
času naprej proti P0 širi konkavno, ne konveksno stran od nje (primerjaj sliki 2, 3). Širjenje
je torej časovno obrnjeno. Pri obratu t → −t se rešitev valovne enačbe kompleksno
konjugira, kar v našem primeru pomeni, da se vhodni val spremeni kot

u0
eikr

r
→ u0

e−ikr

r
, (11)

Bolj pozoren bralec bo opazil, da se pri novi postavitvi (slika 3) spremeni tudi predznak
cos(n, r), ki je prisoten v uklonskem integralu. V tem primeru približek (4) ni več veljaven,
saj sta P in P0 na isti strani odprtine in sta oba kosinusa enako predznačena. Zares gre
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Slika 3: Postavitev, ki ustreza uklonu ravnega vala skozi lečo v ravnini A v goriščno
ravnino F . V lečo z leve vstopa val iz presevno osvetljenega objekta v ravnini V , z rdečo
na levi je narisan vpadni ravni val, s katerim osvetlimo sam objekt. Val točkovnega izvora
iz slike 2 nadomesti svetlo moder val, ki se širi proti točki P0, ne iz nje. Ta časovni obrat
širjenja matematično predstavlja konjugacijo vala, ki jo uporabimo v izpeljavi. Uklon
opazujemo v točki P.

za to, da se s konjugacijo vhodnega vala nekoliko spremeni oblika celotnega uklonskega
integrala. Za postavitev na sliki 3, kjer sta obe točki P,P0 na isti strani odprtine, je
uklonski integral

u(P) = −i
u0

2λ

∫

A

eik(−r+s)

rs

[

cos(n, r) + cos(n, s)
]

dS,

Novi integral podaja uklonski vzorec v goriščni ravnini zbiralne leče, v katero vpada
ravni val z amplitudo u0 (slika 3), njegov Fraunhoferjev približek pa je analogno

u(P) ≈ −i
u0

λ

(

cosϑ
r0s0

)
∫

A

eik(−r+s)dS. (12)

Na sliki 3, kjer je p0, q0 = 0 in je r0 enak goriščni razdalji f , dobimo za veljavnost približka
prvega reda namesto pogojev (10) nova pogoja

p2, q2 �
4r0λ

d2max
, −

1

r0
−

1

s0
= 0. (13)

Drugi pogoj, ki mu prej nismo mogli zadosti zaradi nenegativnosti razdalj, je zdaj izpol-
njen. Če sta smerna sinusa p, q zadostno majhna, namreč velja s0 ≈ r0 = f . Če dobljeni
približek prvega reda vstavimo v integral (12), dobimo do konstantne faze natančno3

u(p, q) =
u0

λf 2

∫

A

eik(pξ+qη) dS, (14)

3Zapis je natančen do konstantnega faznega faktorja, ki pa ni odvisen od položaja na uklonski sliki,
temveč zgolj dimenzij postavitve. Ker nas zanimajo nas le relativne faze med deli uklonske slike lahko ta
faktor izpustimo.
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Zapisali smo uklonski vzorec, ko je naš vhodni val preprosto lom enostavnega ravnega
vala. Poglejmo, kaj se zgodi, če ta ravni val izhaja iz presevno osvetljenega objekta,
osvetljenega z enostavnim ravnim valom.

2.3 Presevno osvetljen objekt
Pred lečo postavimo z ravnim valom osvetljen objekt, določen s transmisijsko funkcijo
T (ξ, η), tako da je val za objektom oblike

u(ξ, η) = u0T (ξ, η). (15)

Potem se val fazno zamakne v vsaki točki, iz katere sevajo interferirajoče valovne fronte.
Predstavljamo si, da je odprtina V veliko večja od odprtine A. Tako lahko uklonske pojave
na odprtini V odmislimo in val tik po vzorcu res gledamo le kot vpadni val osvetlitve u0,
pomnožen s kompleksno T (ξ, η). Slika v goriščni ravnini se torej spremeni v

u(p, q) ≈
u0

λf 2

∫

A

T (ξ, η)eik(pξ+qη)dS.

Če v integralu funkcijo T razširimo na celotno ravnino, tako da je izven odprtine T = 0,
je integral preprosto

u(p, q) ≈
u0

λf 2

∫

R2

T (ξ, η)eik(pξ+qη)dS

=
u0

f 2

∫

R2

T (ξ, η)ei2π(pξ+qη)dS. (16)

Če zapisano jedrnato povzamemo – leča preko uklona v svoji goriščni ravnini blizu
optične osi ustvari sliko, ki je enaka inverzni Fourierjevi transformiranki slike objekta

u(p, q) =
1

f 2
F−1

{

u0T (ξ, η)
}

, (17)

Objektiv sliko objekta Fourierjevo transformira4 v goriščno ravnino, za tem pa okular
izvede enako transformacijo. Zaporedje dveh enakih transformacij izvorno sliko T le
prezrcali, v vmesni stopnji pa manipulacija žarka v goriščni ravnini omogoča, da se s sliko
„poigramo“ na več zanimivih načinov. Kakšni so ti }ltri in kaj nam omogočajo bomo
opisali v nadaljevanju.

2.4 Slikanje faznega objekta
Recimo da skozi zbiralno lečo, objektiv, opazujemo čisti fazni objekt. Tak objekt svetlobe
ne absorbira, temveč jo le fazno zamakne za ϕ. Pripada mu transmisijska funkcija oblike

T (ξ, η) = eiϕ(ξ,η) (18)

Če je optična debelina ϕ majhna, lahko zapišemo približek

T (ξ, η) = 1 + iϕ(ξ, η) +O(ϕ2) (19)

Najprej si bomo pogledali preprostejši primer periodičnega faznega objekta.
4Pravzaprav gre za inverzno Fourierjevo transformacijo, a tu vseskozi pišemo „Fourierjevo transfor-

macijo“, saj je razlika v našem primeru stranskega pomena.

6



2.5 Uklonski redi v goriščni ravnini
Naj bo optična debelina objekta, ki ga slikamo, funkcija koordinate ξ, v smeri η pa je
objekt translacijsko invarianten. Oblika je periodična s periodo 1, torej lahko 1 + iϕ

razvijemo v Fourierjevo vrsto

1 + iϕ(ξ) = 1 +
∑

m ̸=0

cme
i2πmξ, (20)

pri čemer smo ničti koe}cient c0 = 1 pisali posebej5. Sami koe}cienti določajo uklonski
vzorec u(p) v goriščni ravnini objektiva, ki nastane kot Fourierjeva transformiranka T =
eikϕ(ξ). Ker pa je T periodična, njena transformiranka ni zvezna funkcija smeri p kot v
izrazu (17), temveč vrsta. Če bi jo vseeno zapisali kot funkcijo, bi imela obliko Diracovega
glavnika

u(p) =
1

f 2
F−1

{

u0T (ξ)
}

=
u0

f 2

∑

m ̸=0

cmδ(p− pm).

V goriščni ravnini F so za periodičen fazni objekt prisotni diskretni uklonski redi s koe}ci-
enti cm. Posebej zapisan koe}cient c0 je koe}cient ničtega reda, ki predstavlja povprečno
absolutno vrednost naše transformirane T , ki je preprosto 1.

2.6 Fazni kontrast
Uklonski redi v goriščni ravnini so prostorsko ločeni. Če enega izmed njih npr. prestreže-
mo, smo s tem na nič nastavili koe}cient c′m v Fourierjevi vrsti slike u(ξ′), ki nastane, ko
okular uklonski vzorec še enkrat Fourierjevo transformira

u(ξ′)

u0

= c′0 +
∑

m ̸=0

c′me
i2πmξ′ = 1 + 2ϕ(x) +O(ϕ2).

A prestrezanje ni edini način, da modi}ciramo uklonske rede. Osnovna ideja faznega
kontrasta je, da v goriščni ravnini uklonske rede modi}ciramo kot

Uklonski redi v goriščni ravnini so prostorsko ločeni. Če enega izmed njih npr. prestre-
žemo, smo s tem na nič nastavili koe}cient c′m v Fourierjevi vrsti slike u(ξ′), ki nastane,
ko okular uklonski vzorec še enkrat Fourierjevo transformira

u(ξ′)

u0

= c′0 +
∑

m ̸=0

c′me
i2πmξ′ .

A prestrezanje ni edini način, da modi}ciramo uklonske rede. Osnovna ideja faznega
kontrasta je, da v goriščni ravnini uklonske rede modi}ciramo kot

fazni kontrast Ff :
c0 7→ ic0

cm 7→ cm.
(21)

Tedaj ima slika za okularjem obliko i+ iϕ, njena intenziteta pa je

I(ξ′)

u2
0

=
∣

∣1 + ϕ(ξ′) +O(ϕ2)
∣

∣

2
= 1 + 2ϕ(ξ′) +O(ϕ2). (22)

5Predpostavili smo tudi, da je povprečje 〈ϕ〉 = 0, torej je povprečje 〈1 + iϕ〉 = 1.
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+π/2

(a)

+π/2

(b) (c)

Slika 4: (a) Fazna plošča, ki v osrednjem delu žarek zamakne naprej za π/2. (b) Fazna
plošča z zakasnitvenim obročem namesto zakasnitvene pike. (c) Postavitev fazne plošče
znotraj objektiva, v goriščni ravnini objektiva. Slika vzeta iz [3].

Vidimo torej, da slika za okularjem reproducira našo izvorno periodično ϕ(ξ). Če žarka
ne bi prestregli, bi bila intenziteta po okularju točno

I(brez f. k.)
u2
0

=
∣

∣F−1
{

F−1 T (x)
}∣

∣ = |T (−x)| = 1,

saj bi dvakratna Fourierjeva transformacija transmisijsko T preslikala nazaj samo vase,
le v prezrcaljenih koordinatah. S }ltrom faznega kontrasta smo torej razkrili drugače
nevidno strukturo faznega objekta.

Za fazni kontrast je torej ničelni red potrebno fazno zamakniti kot 1 7→ i. To dosežemo
s fazno ploščo, ki v sredini vsebuje t. i. zakasnitveno piko. To je dodaten sloj optičnega
materiala, ki žarek fazno zamakne za π/2 ali za 1/4 valovne dolžine in omogoči, da fazni
objekt postane viden (glej sliki 4a, 4b).

Glede na smer faznega zamika ločimo dve variaciji metode. Že omenjena, v kateri
je fazni zamik pozitiven, je t. i. pozitivni fazni kontrast. Če pa je fazni zamik za π/2
negativen ali enakovredno enak 3π/2, v okularju namesto 1 + 2ϕ vidimo sliko 1− 2ϕ. V
tem primeru govorimo o negativnem faznem kontrastu. Za primerjavo glej sliko 5.

(a) (b)

Slika 5: Zrna škroba, pridobljena iz korenike Maranta arundinacea. (a) Pozitiven fazni
kontrast. (b) Negativen fazni kontrast. Sliki vzeti iz [6].
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Slika 6: Vpliv povečevanja zakasnitvene pike v fazni plošči. (a) Slika z zakasnitveno piko,
ki zajame le en diskreten osrednji red. (b) Slika s piko, ki zajame še 1 dodaten red in (c)
4 dodatne rede v vse smeri. Vseh diskretnih redov je 2048 × 2048. Na sliki (č) vidimo
vrednosti v sredinskem prerezu (vijolična, modra in rdeča za slike a, b in c).

2.7 Fazni kontrast v praksi
Metodo smo predstavili na preprostem primeru periodičnega objekta, ki ima v goriščni
ravnini prisotne diskretne rede. Za splošno obliko faznega objekta (npr. živih celic) pa je
Fourierjeva transformiranka zvezna funkcija v goriščni ravnini.

Ničelni red torej ni ostro ločen od višjih redov – končna velikost zakasnitvena pika
bo neizogibno zamaknila tudi rede v neposredni okolici ničelnega reda. Učinek tega si
poglejmo na simuliranem primeru z diskretno Fourierjevo transformacijo. Na sliki 6 vidi-
mo vpliv na sliko, ko večamo zakasnitveno piko, s tem pa zamikamo vedno več sosednjih
redov. Če v diskretni sliki zamaknemo zgolj ničelni red, kot na sliki 6a, bo slika popol-
na reprodukcija faznega objekta. Ko pa zamikamo vedno več redov, se na sliki pojavijo
artefakti v obliki svetlega ali temnega soja okoli opazovanega objekta. Ti artefakti so
podobni tistim, ki jih vidimo v pravih slikah s faznim kontrastom, npr. okoli krvnih celic
na sliki 1b.

Izkaže se, da vpliv teh artefaktov zmanjšamo, če uporabimo ozek podolgovat vir sve-
tlobe v kombinaciji s fazno ploščo z ozkim zakasnitvenim trakom [4]. To v sistem vnese
visoko mero neželene anizotropije, ki se ji delno izognemo, če namesto podolgovate oblike
uporabimo obliko ozkega obroča. Dodatno nam obročasta zaslonka kondenzorja zagotovi
boljšo resolucijo kot okrogla zaslonka (pokazano v [5], poglavje 8.6.2).

Kontrast slike lahko dodatno izboljšamo, če zakasnitveni obroč ni povsem prozoren,
temveč del svetlobe absorbira. Za obroč, ki prepusti β < 1 svetlobne amplitude, bo slika
v amplitudi oblike iβ + 2iϕ, v intenziteti pa bo slika

I(ξ′)

u2
0

≈ β2 + 2βϕ(ξ′). (23)

Če je β npr. 0.5, bo razmerje med ozadjem β2 in signalom povečano za faktor 1/β = 2. S
absorpcijo v zakasnitvenem obroču torej povečamo kontrast, izgubimo pa nekaj celotnega
signala.

3 DIC mikroskopija
Metodo kontrasta z diferenčno interferenco ali krajše DIC (ang. dizerential interference
microscopy) je fazno občutljiva metoda, ki jo je v 1952 dokončno razvil Georges Nomarski.
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Slika 7: Diagram mikroskopa DIC, ki informacijo o fazi zagotovi z interferenco dveh žarkov
različnih polarizacij. Žarek se na prizmi razcepi na žarka polarizacij 0 in π/2, narisana z
rdečo in modro. (b) Glista C. elegans, posneta z DIC mikroskopom. Slika vzeta iz [8].

Metoda za tvorbo slike uporabi dva vzporedna žarka, ločena z majho razdaljo, primer-
ljivo z ločljivostjo mikroskopa [7]. Preko interference tedaj merimo razliko optične debeline
med točkama, ki ji žarka prebadata. Metoda je v primerjavi s klasičnimi pristopi mnogo
enostavnejša za implementacijo.

Mehanizem je prikazan na sliki 7a. Žarek koherentne svetlobe skozi polarizator vstopa
v prizmo posebne izdelave. To je prizma Nomarskega, narejena iz dvolomnega materiala,
v katerem je lomni količnik odvisen od polarizacije svetlobe. Prizma žarek loči na žarek
polarizacije 0 (na sliki z modro) in žarek polarizacije π/2 (na sliki z rdečo).

Ločena žarka kondenzor [9] kolimira. Dobimo torej polarizacijsko pravokotna vzpo-
redna žarka, ločena z majhnim razmikom. V ravnini vzorca V oba žarka potujeta skozi
objekt in sta fazno zamaknjena za optični debelini ϕ(ξ1) in ϕ(ξ2), katerih razlika je

∆ϕ = ϕ(ξ1)− ϕ(ξ2) (24)

V drugi prizmi se žarka združita. A ker sta po polarizaciji pravokotna, ne interferirata.
Interferirata šele po drugem polarizatorju, ki obe komponenti projicira na smer π/4.
Tako prej pravokotno polarizirani komponenti kažeta v isto polarizacijsko smer in kot
taki interferirata.

Signal ki ga zajamemo, je tako v intenziteti sorazmeren kvadratu razlike optičnih
debelin ∆ϕ. Slika torej prikazuje odvod optične debeline, primer lahko vidimo na sliki 7b.

4 Kvantitativno fazno slikanje
Metode fazno občutljivega slikanja niso nujno zgolj mehanizmi, ki izboljšajo kontrast opa-
zovanega objektu. Fazni zamik oz. optično debelino lahko obravnavamo kot samostojno
kvantitativno količino, preko katere lahko sklepamo o lastnostih objekta, ki ga opazujemo.
Najbolj osnovna izmed teh količin je masna koncentracija snovi, tipično beljakovin.

4.1 Masna koncentracija
Metode kvantitativne faze izkoriščajo dejstvo, da je lomni inkrement ∆n premo sorazme-
ren masni koncentraciji snovi v raztopini. Sorazmernostni koe}cient imenujemo speci}čen
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lomni inkrement (ang. speci}c refraction increment) in ga označimo kot

α =
∆n

w
,

pri čemer je w masna koncentracija snovi v raztopini. Snovi, ki nas zanimajo v povezavi
z živalskimi celicami, so v največji meri beljakovine, v manjši meri tudi genetski material,
sladkorji in lipidi. Lomni inkrementi teh beljakovin so dovolj podobni, da v literaturi že
dolgo obstaja neformalen dogovor o srednji vrednosti, ki je navadno

αdogovor = 0.185mL/g

Ta priročen dogovor, predlagan v viru [10] je podprt tudi v bolj trenutnem pogledu.
Speci}čni lomni inkrementi človeških beljakovin so npr. porazdeljeni po relativno ozki
Gaussovki, s povprečjem v 0.190mL/g in standardno deviacijo ∼ 2% te vrednosti [11].
Dogovorjena vrednost speci}čnega lomnega inkrementa je torej priročen in precej robusten
nadomestek za bolj natančno določanje sestave organizmov, ki jih preučujemo.

4.2 Merjenje optične debeline
Pristopi, ki se vpričo dostopnosti osredotočajo na prilagoditev obstoječih metod, tipično
sestojijo iz razvoja boljših algoritmov za rekonstrukcijo faze (ang. phase retrieval) iz
intenzitetnih slik.

Kvantitativno fazno slikanje je obudilo tudi zanimanje za interferometrijskih meto-
dah z ločenim referenčnim žarkom, saj te v osnovi ponujajo kvantitativne meritve faze.
Obetavne so tudi metode digitalno hologra}je, interferometrijske metode z belo ali neko-
herentno svetlobo ter predvsem metode, ki združujejo dva ali več osnovnih mehanizmov,
integriranih preko vedno bolj so}sticiranih algoritmov za rekonstrukcijo [12]. Ena taka
metoda je npr. mikroskopija SLIM, ki združuje metodo faznega kontrasta z digitalno
hologra}jo [13] (v poglavju 5.2 si ogledamo aplikacijo te metode).

5 Primeri uporabe
5.1 Slike sečnih sedimentov
Kako veliko izboljšavo predstavlja fazni kontrast, poglejmo na primeru. Monogra}ja [1]
vsebuje primerjavo na množici slik sečnih sedimentov; posnetimi prvo z navadnim mikro-
skopom in nato s faznim kontrastom (slika 1).

5.2 Diagnostični model raka na dojkah
Fazne slike tkiva so v [14] uporabili kot osnovo za razvoj diagnostičnih meril raka na doj-
kah. Celice mlečnih žlez, na podlagi katerih se diagnoza izvaja, so prozorne. Za potreben
kontrast je namesto standardnega para histoloških barvil hematoxylin-eosin uporabljena
metoda SLIM (ang. spatial light interference microscopy) [13].

Slike optične debeline služijo kot vhodni podatek za razvoj novega diagnostičnega
modela, v katerem nastopajo tri značilke. Značilke so izračunane na podlagi zajetih
slik, njihove vrednosti po površini celice vidimo na sliki 8. Prva značilka je geometrijska
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(a) (b)

Slika 8: Značilki za diagnostični model raka na dojkah za benigno celico. (a) Optična
debelina z izračunano povprečno ukrivljenostjo. (b) Izračunana 〈ls〉, povprečna prosta
pot svetlobe, ki se sipa v tkivu. Slike vzete iz [14].

ukrivljenost optične debeline, izračunana neposredno iz fazne slike. Druga značilka je
povprečna prosta pot za sipanje 〈ls〉, ki jo po [15] iz fazne slike izračunamo kot

〈ls〉 =
d

var {ϕ(ξ, η))} ,

pri čemer je d debelina vzorca, v imenovalcu pa imamo varianco fazne slike. Tretja zna-
čilka je osnovana na notranji organizaciji celičnih komponent, ki jih lahko prepoznamo
kot spremembo v teksturi zajete slike. Značilke, označene s znanimi diagnozami, so upo-
rabljene kot podatkovna množica za model LDA (ang. linear discriminant analysis). V
članku z vzorci tkiva 68 pacientov (34 malignih in 34 benignih) pri 3-kratno navzkrižnem
preverjanju kot maligne pravilno zaznajo 94% malignih primerov (občutljivost) in kot
benigne zaznajo 85% benignih primerov (speci}čnost).

6 Zaključek
Področje fazno občutljivih metod je aktivno področje raziskav, tako v razvoju novih metod
kot tudi uvajanju že uveljavljenih. Posebej popularne so metode kvantitativnega faznega
slikanja, preko katerih lahko merimo maso, podrobno morfologijo in mehanske lastnosti
živih celic. Že zdaj je mogoče trditi, da so znatno prispevale k našemu kolektivnemu
razumevanje življenjskih procesov.
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