
ERK'2025, Portorož, 361-364 361

Ray tracing Gaussians

Martin Šifrar, Matija Marolt, Žiga Lesar

University of Ljubljana, Faculty of Computer and Information Science

E-pošta: ms64333@student.uni-lj.si, matija.marolt@fri.uni-lj.si, ziga.lesar@fri.uni-lj.si

Abstract

We review the theory of volumetric path tracing with spe-

cial attention to Gaussians as a way to model volumetric

media. Such a representation is simple to evaluate and

permits closed-form expressions for both transmittance

and distance sampling. We build on prior work by imple-

menting a complete volumetric path tracer for rendering

Gaussians, demonstrating that a scene represented as a

sum of volumetric Gaussians can be efficiently path traced,

while refining the underlying mathematical formulation.

1 Introduction

Path tracing is the core algorithm behind most state-of-the-

art approaches to simulating light in a scene. At its core,

it is a Monte Carlo algorithm, and noise is always present

in any produced image. This is even more pronounced

in volumetric path tracing, where estimated integrals are

of a higher dimension and convergence is slower [1]. We

go over basic principles of volumetric path tracing and

the most important techniques for reducing the variance

(i.e. noise) of Monte Carlo integration. In particular,

we apply these ideas to the case of rendering Gaussians,

where algorithm specialization is possible, as presented

by Condor et al. [2]. We identify a problem in the original

formulation and propose a correction.

1.1 Related Work

Gaussian representations for volumetric scenes were pro-

posed by Condor et al. [2], inspired by the success of

Gaussian splatting [3] as a compact and efficient scene

representation. Unlike rasterization-based splatting, which

requires sorting and suffers from artifacts such as popping

and limited support for relighting or complex camera mod-

els, the path-traced approach offers a physically based

alternative with fewer limitations.

2 Volumetric path tracing

Just like surface path tracing has its mathematical foun-

dation in the rendering equation [4], there is a similar

integral equation, which can be derived by integrating

the radiative transfer equation [5]. The so-called volu-

metric rendering equation (VRE) expresses the incoming

radiance as an integral of attenuated in-scattered radiance

Figure 1: Integration without/with multiple importance sampling.

(Left) Sampling only according to PDFϕ(ω
′). (Right) Multiple

importance sampling.

along a ray x
′(t) = x+ tω for a finite medium ending at

x
† = x

′(t†),

L(x, ω) =

∫
t
†

0

T (x,x′)S(x′, ω) dt+ T (x,x†)L(x†, ω),

(1)

where S(x′, ω) is the in-scattered radiance. The first term

sums up the attenuated in-scattering along the ray. The

second term is the light transmitted through the medium

from the point where the ray exits the medium. Attenua-

tion of radiance is due to absorption and out-scattering, so

we can combine their coefficients into a total attenuation

coefficient σt = σa + σs [m
−1]. Traveling along a ray,

light is attenuated by a transmittance factor

T (x,x′) =

∫
t

0

σt(t
′) dt′. (2)

Light is added to rays by in-scattering according to

L′(t) = σs(t)S(t). This contribution at the point on a ray

is given by the in-scattering integral

S(x′, ω) = σs(x
′)

∫
4π

ϕ(x′, ω, ω′)L(x′, ω′) dω′. (3)

Here ϕ(x′, ω, ω′) is the phase function, which encodes the

directionality of the scattering process, i.e. it gives relative

magnitudes of scattering from incoming direction ω′ to

the current ray direction ω. Scattering conserves energy,

so this function is normalized
∫
4π

ϕ(x′, ω, ω′) dω′ = 1.

362

2.1 Monte Carlo radiance estimator

We solve the VRE integral equation by Monte Carlo (MC)

integration with a recursive estimator,

gL(x, ω) =
T (x,x′)

PDF(t)
· gS(x

′, ω) + T (x,x†) · gL(x
†, ω).

(4)

where gS is an estimator for the in-scattering integral,

gS(x
′, ω) =

σs(x
′)ϕ(x′, ω, ω′)

PDF(ω′)
· gL(x

′, ω′), (5)

which estimates Equation (3) by sampling incoming direc-

tions ω′ ∼ PDF(ω′).

2.2 Distance sampling

To reduce variance, we use importance sampling [6, Ch.

2.2.2] for gL, with a distribution PDF(t) ∝ T (x,x′),

PDF(t) = σt · e
−σtt, (homogeneous medium), (6)

which is simple to achieve by inverse transform sampling.

For the more general case of spatially varying media, dis-

tance sampling is trickier, as the desired sampling distri-

bution is the more general

PDF(t) = σt(t) · T (x,x
′), (heterogeneous medium),

(7)

where transmittance T (x,x′) = e−τ(x,x′) is directly re-

lated to the optical thickness τ(x,x′) =
∫ t

0
σt(x

′) dt.
How such samples are drawn for a prescribed σt(x

′), we

will explain in Sections 2.4 and 3.2. But given samples

from Equation (7), the estimator simplifies to

gL =
1

σt(x′)
· gS(x

′, ω) + T (x,x†) · gL(x
†, ω). (8)

Such sampling produces t ∈ [0,∞), while the VRE in-

tegral only extends up to t†, so we would have to reject

any t > t†. But since it exactly holds that P (t > t†) =
T (x,x†), we can avoid rejections by using an estimator

gL =

{

1
σt(x′) · gS(x

′, ω) t < t†, (ray scattered),

T (x,x†) · gL(x
†, ω) (ray escaped the medium).

(9)

This is the estimator we use in our implementation.

2.3 Multiple importance sampling

Multiple importance sampling, introduced by Veach [1], is

a way to reduce the variance of MC estimators by combin-

ing different sampling methods. In our case, we combine

phase-function sampling ω′ ∼ PDFϕ(ω
′) = ϕ(ω′) and

lights sampling ω′ ∼ PDFℓ(ω
′), where PDFℓ(ω

′) is the

uniform probability density over the directions in which

there are lights present. The estimation then proceeds

as follows. At each step, a sample is drawn from each

distribution, while the estimators are combined into a new,

improved multiple importance estimator

gMIS
S = wMIS

ℓ (ω′
ℓ) ·

ϕ(x′, ω, ω′
ℓ)

PDFℓ(ω′
ℓ)
· L(x′, ω′

ℓ)

+ wMIS
ϕ (ω′

ϕ) ·
ϕ(x′, ω, ω′

ϕ)

PDFϕ(ω′
ϕ)
· L(x′, ω′

ϕ), (10)

Figure 2: A test render composed of multiple overlapping Gaus-

sians and homogeneous ellipsoids.

where wMIS
ℓ and wMIS

ϕ are the appropriate weights, calcu-

lated according to a balance heuristic [1]. Implementing

multiple importance sampling gave a large improvement

in the quality of the renders (see Figure 1 for comparison).

2.4 Delta tracking

In Section 2.2, we simplified the estimator, assuming sam-

ples are drawn from distribution in Equation (7). An

obvious, but highly bias-prone way to produce such sam-

ples is inverse transform sampling via ray-marching [6,

ch. 11.2]. An unbiased alternative is the delta tracking

algorithm [5]. The medium is imagined to be a mixture of

real and null particles (vacuum), with the dense material

having a constant scattering coefficient, i.e. the majorant

σ = max {σt(x
′)} , t ∈ [0, t†].

Samples are then drawn according to PDF(t) = σ · e−σt,

as if the medium were composed entirely of real particles.

After such a sample is drawn, we draw another random

number to determine if a particle is real or a null particle.

If a particle is a null particle, we simulate a so-called null-

scattering event, where light continues on a straight path

like in a vacuum. The probability that a particle at t is

real is Preal =
σt(x

′)
σ

. It is best to simply write down the

pseudo code (see Algorithm 1).

Algorithm 1 Delta tracking for a t ∼ σt(t)T (x,x
′)

function SAMPLE DISTANCE(x, ω, σ)

t = 0
while true do

Draw ξ1, ξ2 ∼ U(0, 1)
t← t− log(ξ1)/σ

if ξ2 < σt(x
′)

σ
then

break

return t

3 Gaussian scene representation

We turn our attention to the special case of a medium

modeled as a sum of 3D Gaussians, introduced by Kerbl

et al. [3] and later adapted for path tracing by Condor et

al. [2]. Here, spatially varying coefficients are represented

as a sum of Gaussians,

σt(x) =

N
∑

i=1

σ
(i)
t Gµ,Σ(x), (11)

363

Figure 3: Transmittance of multiple overlapping Gaussians and

homogeneous ellipsoids. (Left) The delta tracking transmittance

estimator gT for Gaussians. (Right) Closed-form transmittance

for the Gaussians.

where σ
(i)
t is the Gaussian’s weight, µ is its center, and Σ

is the Gaussian’s covariance matrix. The basic form of the

Gaussian is given as

Gµ,Σ(x) =
1

(2π)
3
2 (|Σ|) 1

2

e−
1
2 (x−µ)TΣ−1(x−µ), (12)

where |Σ| 12 means
√

det(Σ) = SxSySz , with Sx, Sy and

Sz being the eigenvalues of the covariance. The covari-

ance matrix Σ is symmetric and can be decomposed as

Σ−1 = QM−2QT = Q





S−2
x 0 0
0 S−2

y 0
0 0 S−2

z



QT ,

where Sx, Sy, Sz are the ±1σ radii in the Gaussian local-

space. In general, the Gaussian is not axis-aligned; its

rotation in world-space is given by a rotation matrix Q ∈
SO(3) or equivalently a unit quaternion q ≃ Q.

3.1 Closed-form transmittance

At each step of using the recursive estimator, we must

propagate the radiance through media, which means mul-

tiplying it with the transmittance T . If there are multiple

media boundaries, we accumulate the appropriate partial

transmittances. In the simple case of homogeneous media,

partial transmittances are of the form e−σ
(i)
t t†

(i)

. This ac-

cumulation continues until we reach an opaque medium

(then T = 0) or reach a light and add the contribution

T · Llight. In spatially varying media, transmittance can

be estimated with a binary estimator and samples from

distribution in Equation (7), e.g., with delta tracking

gT =

{

0, t > t† (scattered),

1, (escaped).
(13)

This approach works in general, but for the case of Gaus-

sian primitives, we can obtain closed-form expressions of

transmittance or, equivalently, the optical thickness. Con-

dor et al. [2] derive an expression for the optical thickness

along a ray through a Gaussian primitive. Based on dimen-

sional analysis, we believe the expressions in the paper

contain minor errors, and we present the corrected forms

below. The optical thickness of a single Gaussian along a

ray x
′ = x+ tω, specified in the Gaussian’s local space,

0 1 2 3 4

ray parameter s

0.00

0.25

0.50

0.75

1.00

1.25

analytic, ±2σ

0 1 2 3 4

ray parameter s

0.00

0.25

0.50

0.75

1.00

1.25

analytic, ±1σ

Figure 4: Analytic distance sampling for a Gaussian with differ-

ent cutoffs. (Top) Gaussian limited to a ±3σ ellipsoid. (Bottom)

Gaussians limited to ±2σ and ±2σ ellipsoids.

is

τi(x,x
′) = σ

(i)
t

∫ t

0

Gµ,Σ dt

=
σ
(i)
t e−C1

4π
√
C0

(

erf

(

t · C0 + C2

(2C0|Σ|)
1
2

)

− erf

(

C2

(2C0|Σ|)
1
2

))

(14)

where C0, C1 and C2 are constants depending on the start-
ing position of the ray x and direction ω. Condor et al. [2]
give these values as

C0 = S
2
xS

2
yω

2
z + S

2
zS

2
xω

2
y + S

2
yS

2
zω

2
x,

C1 =
C3 + C4

2C0

,

C2 = xzS
2
xS

2
yωz + xyS

2
zS

2
xωy + xxS

2
yS

2
zωx,

C3 =
(

x
2
xS

2
y + x

2
yS

2
z + x

2
zS

2
x

)

ω
2
z − 2xzωz

(

xyS
2
xωy + xxS

2
yωx

)

,

C4 = ω
2
y

(

x
2
xS

2
z + x

2
zS

2
x

)

− 2xxxzωxωyS
2
z + ω

2
x

(

x
2
yS

2
z + x

2
zS

2
y

)

.

(15)

With a closed-form expression for transmittance, we avoid

drawing random samples when evaluating direct lighting.

In overlaps, we multiply the transmittances of the partic-

ipating media T = T (1)T (2) . . . T (noverlap). In Figure 3,

we see that this transmittance matches the one computed

with the delta tracking estimator gT , just without the noise.

3.2 Closed-form distance sampling

Equation (14) can also be used to sample distance samples

according to PDF(t) = σt(t)T (x,x
′). In a manner simi-

lar to homogeneous media, we pick a random ξ ∼ U(0, 1)
and then invert the expression for optical thickness so that

τ = − log ξ. We follow the paper [2] and assume that the

start point of the ray x is well outside the Gaussian. Then

the second error function term in Equation (14) becomes

erf(−∞) = −1, and we can write

−1− 4π
√
C0

σ
(i)
t e−C1

(log ξ) = erf

(

t · C0 + C2

(2C0|Σ|)
1
2

)

, (16)

364

Figure 5: Rendering with closed-form distance sampling of 64

(left) and 256 (right) randomly placed Gaussians.

2
3
2
4
2
5
2
6
2
7
2
8
2
9
2
10

num. gaussians

10
−2

10
0

10
2

ex
ec
u
ti
on

ti
m
e
[s
]

delta tracking

analytic

O(nGaussians)

Figure 6: Execution times by the number of Gaussians. Render

time is dominated by casting of rays, it scales linearly with the

number of Gaussians and is almost identical for delta tracking

(in blue) and closed-form distance sampling (in red).

which can be inverted by simply applying the inverse error

function erf−1. In Figure 4, we can see such closed-form

sampling for a single Gaussian, with different cutoffs.

4 Results

We implemented all sampling strategies described in the

paper in C. Scenes with randomly placed Gaussians (Fig-

ure 5) show that render time scales linearly with the num-

ber of Gaussians (Figure 6). Timing is dominated by ray

casting and remains similar across both sampling methods.

To achieve sub-linear scaling, Condor et al. [2] use GPU

hardware-backed acceleration structures. Our implemen-

tation currently lacks such acceleration structures.

Path tracing is embarrassingly parallel, enabling effi-

cient multithreading. Our CPU implementation splits the

image across threads, but naive pixel-index partitioning

causes some threads to finish much sooner than others. To

prevent this imbalance, we divided the image into 64× 64
tiles and randomly shuffled the tiles between the threads

(Algorithm 2). This gives each thread a mix of easy and

hard work and improves thread utilization, as shown in

Figure 7.

Multithreaded performance suffered when using rand

from libc, likely due to shared state (Figure 7). Switch-

ing to a PCG32 generator [7] and using thread-local state

fixed this issue and improved statistical properties.

Testing revealed issues with medium tracking, espe-

cially inside thin geometry. Due to floating-point errors,

rays can miss exit intersections, causing unbounded me-

dia. We attempted to fix this by ignoring closely spaced

intersections (closer than 10−5), but this fails for oblique

surfaces, leading to leaks. Rendering typical Gaussian

1 2 3 4 5 6 7 8 910

threads

50

100

ex
ec
u
ti
on

ti
m
e
[s
]

bands

64 × 64

UNIX rand()

1 2 3 4 5 6 7 8 910

threads

0

2

4

sp
ee
d
u
p

Figure 7: Timings (left) and relative speedup (right) for the

Gaussian test scene with 500 samples per pixel and different

numbers of threads. (In green) Naive partitioning of the image

into bands over a linear pixel-index. In purple, division into

64× 64 randomly shuffled tiles. In blue, division into tiles, but

using rand() from libc instead of PCG32.

Algorithm 2 Shuffled tiles dispatch logic for one thread.

Initialize tile shuffle as a random permutation

of integers from 0 to 64× 64− 1
for n = 1 to Nsamples do

for n = nfirst tile to nlast tile do

ñ← tile shuffle[n]
u, v ← ñ mod 64, ⌊ñ/64⌋
xstart, xend ← ⌊Wu/64⌋ , ⌊W (u+ 1)/64⌋
ystart, yend ← ⌊Hv/64⌋ , ⌊W (v + 1)/64⌋
for x = xstart to xend − 1 do

for y = ystart to yend − 1 do

render pixel(x, y)

splatting datasets (in the order of 105 Gaussians) in min-

utes would require a 100× speedup, ideally via GPU in-

tegration using hardware-accelerated ray casting. Future

work would involve adding appropriate acceleration struc-

tures and possibly porting the implementation to the GPU.

5 Conclusion

We presented a volumetric path tracing formulation for

rendering Gaussians, noted an error and suggested a cor-

rected form of equation (14) from Condor et al. [2]. Future

work includes fixing numerical issues, adding acceleration

structures and improving parallelization using a GPU.

References

[1] E. Veach. Robust Monte Carlo methods for light transport

simulation. Stanford University, 1998.

[2] J. Condor et al. “Don’t Splat your Gaussians”. In: ACM

TOG (2025).

[3] B. Kerbl et al. “3d gaussian splatting for real-time radiance

field rendering.” In: ACM TOG (2023).

[4] J. T. Kajiya. “The rendering equation”. In: Proceedings

of the 13th annual conference on Computer graphics and

interactive techniques. 1986.

[5] J. Novák et al. “Monte Carlo methods for volumetric light

transport simulation”. In: Computer graphics forum. 2018.

[6] M. Pharr, W. Jakob, and G. Humphreys. Physically based

rendering. 4th ed. MIT Press, 2023.

[7] M. E. O’Neill. “PCG: A family of simple fast space-

efficient statistically good algorithms for random number

generation”. In: ACM TOMS (2014).

