Ray tracing Gaussians

Martin Sifrar, Matija Marolt, Ziga Lesar

University of Ljubljana, Faculty of Computer and Information Science
E-posta: ms64333 @student.uni-lj.si, matija.marolt@fri.uni-lj.si, ziga.lesar@fri.uni-lj.si

Abstract

We review the theory of volumetric path tracing with spe-
cial attention to Gaussians as a way to model volumetric
media. Such a representation is simple to evaluate and
permits closed-form expressions for both transmittance
and distance sampling. We build on prior work by imple-
menting a complete volumetric path tracer for rendering
Gaussians, demonstrating that a scene represented as a
sum of volumetric Gaussians can be efficiently path traced,
while refining the underlying mathematical formulation.

1 Introduction

Path tracing is the core algorithm behind most state-of-the-
art approaches to simulating light in a scene. At its core,
it is a Monte Carlo algorithm, and noise is always present
in any produced image. This is even more pronounced
in volumetric path tracing, where estimated integrals are
of a higher dimension and convergence is slower [1]. We
go over basic principles of volumetric path tracing and
the most important techniques for reducing the variance
(i.e. noise) of Monte Carlo integration. In particular,
we apply these ideas to the case of rendering Gaussians,
where algorithm specialization is possible, as presented
by Condor et al. [2]. We identify a problem in the original
formulation and propose a correction.

1.1 Related Work

Gaussian representations for volumetric scenes were pro-
posed by Condor et al. [2], inspired by the success of
Gaussian splatting [3] as a compact and efficient scene
representation. Unlike rasterization-based splatting, which
requires sorting and suffers from artifacts such as popping
and limited support for relighting or complex camera mod-
els, the path-traced approach offers a physically based
alternative with fewer limitations.

2 Volumetric path tracing

Just like surface path tracing has its mathematical foun-
dation in the rendering equation [4], there is a similar
integral equation, which can be derived by integrating
the radiative transfer equation [5]. The so-called volu-
metric rendering equation (VRE) expresses the incoming
radiance as an integral of attenuated in-scattered radiance

ERK'2025, Portoroz, 361-364 361

Figure 1: Integration without/with multiple importance sampling.
(Left) Sampling only according to PDF,(w’). (Right) Multiple
importance sampling.

along a ray x’(t) = x + tw for a finite medium ending at
xt =x/(t1),

tT
L(x,w):/ T(x,x")S(x',w) dt + T(x,x") L(x",w),
0
ey

where S(x’, w) is the in-scattered radiance. The first term
sums up the attenuated in-scattering along the ray. The
second term is the light transmitted through the medium
from the point where the ray exits the medium. Attenua-
tion of radiance is due to absorption and out-scattering, so
we can combine their coefficients into a total attenuation
coefficient o, = o, + o [m~1]. Traveling along a ray,
light is attenuated by a transmittance factor

¢
T(x,x'):/ o) dt’.)
0

Light is added to rays by in-scattering according to
L'(t) = 04(t)S(t). This contribution at the point on a ray
is given by the in-scattering integral

S, w)=0sx) | ¢, w,)L(x',w)dw'. (3)
4T
Here ¢ (', w,w’) is the phase function, which encodes the
directionality of the scattering process, i.e. it gives relative
magnitudes of scattering from incoming direction w’ to
the current ray direction w. Scattering conserves energy,
so this function is normalized [, ¢(x',w,w’) dw’ = 1.

2.1 Monte Carlo radiance estimator

We solve the VRE integral equation by Monte Carlo (MC)
integration with a recursive estimator,

91.%.) = e 05 + Tl x) g ().
“4)

where gg is an estimator for the in-scattering integral,
0s(x")o(x', w, ')
PDF(w’)

which estimates Equation (3) by sampling incoming direc-
tions w’ ~ PDF(w’).

g9s(x',w) = “gr(x, W), (5)

2.2 Distance sampling

To reduce variance, we use importance sampling [6, Ch.
2.2.2] for gy, with a distribution PDF () « T'(x,x’),

PDF(t) = oy - e 7t!, (homogeneous medium), (6)

which is simple to achieve by inverse transform sampling.
For the more general case of spatially varying media, dis-
tance sampling is trickier, as the desired sampling distri-
bution is the more general

PDF(t) = o4(t) - T(x,x’), (heterogeneous medium),

(N
where transmittance T'(x, x’) = e~ 7(**) is directly re-
lated to the optical thickness T(x,x) = fot o¢(x") dt.
How such samples are drawn for a prescribed o4 (x’), we
will explain in Sections 2.4 and 3.2. But given samples

from Equation (7), the estimator simplifies to
1

m cgs (X', w) + T(x,xT) 'gL(xT,w). ¥

gL =
Such sampling produces ¢ € [0, 00), while the VRE in-
tegral only extends up to tf, so we would have to reject
any t > tf. But since it exactly holds that P(t > tT) =
T(x,x"), we can avoid rejections by using an estimator

o [ty astote)
T(X,XT) ogL(xT,w)

t < tT, (ray scattered),

(€))

This is the estimator we use in our implementation.

2.3 Multiple importance sampling

Multiple importance sampling, introduced by Veach [1], is
a way to reduce the variance of MC estimators by combin-
ing different sampling methods. In our case, we combine
phase-function sampling w’ ~ PDFy(w’) = ¢(w’) and
lights sampling w’ ~ PDF(w’), where PDF,(w’) is the
uniform probability density over the directions in which
there are lights present. The estimation then proceeds
as follows. At each step, a sample is drawn from each
distribution, while the estimators are combined into a new,
improved multiple importance estimator

MIS Mis, sy 9@, w,wp) ro
= Rt Sl bt et VAN o
oz’ w,wh)
MIS e
+ wy (W) - 7PDF¢(M(’15) CL(x',w)), (10)

362

(ray escaped the medium).

Figure 2: A test render composed of multiple overlapping Gaus-
sians and homogeneous ellipsoids.

where w™™ and w}!'S are the appropriate weights, calcu-

lated according to a balance heuristic [1]. Implementing
multiple importance sampling gave a large improvement
in the quality of the renders (see Figure 1 for comparison).

MIS
4

2.4 Delta tracking

In Section 2.2, we simplified the estimator, assuming sam-
ples are drawn from distribution in Equation (7). An
obvious, but highly bias-prone way to produce such sam-
ples is inverse transform sampling via ray-marching [6,
ch. 11.2]. An unbiased alternative is the delta tracking
algorithm [5]. The medium is imagined to be a mixture of
real and null particles (vacuum), with the dense material
having a constant scattering coefficient, i.e. the majorant

7 = max{o,(x')}, te]o0,tl].

Samples are then drawn according to PDF(t) =7 - e ¢,

as if the medium were composed entirely of real particles.
After such a sample is drawn, we draw another random
number to determine if a particle is real or a null particle.
If a particle is a null particle, we simulate a so-called null-
scattering event, where light continues on a straight path
like in a vacuum. The probability that a particle at ¢ is

o (x')

real is Prea) = —=—. Itis best to simply write down the

pseudo code (see Algorithm 1).

Algorithm 1 Delta tracking for a t ~ o (¢)T(x,x’)
function SAMPLE_DISTANCE(X, w, 0)
t=0
while true do
Draw 517 52 ~ U(O, 1)
t+ t—1log(&)/o
if & < 75 then
break
return ¢

3 Gaussian scene representation

We turn our attention to the special case of a medium
modeled as a sum of 3D Gaussians, introduced by Kerbl
et al. [3] and later adapted for path tracing by Condor et
al. [2]. Here, spatially varying coefficients are represented
as a sum of Gaussians,

1)

Figure 3: Transmittance of multiple overlapping Gaussians and
homogeneous ellipsoids. (Left) The delta tracking transmittance
estimator gr for Gaussians. (Right) Closed-form transmittance
for the Gaussians.

where a,gi) is the Gaussian’s weight, p is its center, and X
is the Gaussian’s covariance matrix. The basic form of the

Gaussian is given as

! ~(x=1) "8 (k)

G X)= 3 ,,ant
SRR HIE

12)

where |2|2 means \/det(X) = S¢Sy S, with S5, Sy and
S, being the eigenvalues of the covariance. The covari-
ance matrix X is symmetric and can be decomposed as

S72 0 0
E—l — QM—QQT — Q 0 Sy_2 0 QT,
0 0 52

where S, Sy, S, are the 10 radii in the Gaussian local-
space. In general, the Gaussian is not axis-aligned; its
rotation in world-space is given by a rotation matrix @) €
SO(3) or equivalently a unit quaternion ¢ ~ Q.

3.1 Closed-form transmittance

At each step of using the recursive estimator, we must
propagate the radiance through media, which means mul-
tiplying it with the transmittance 7. If there are multiple
media boundaries, we accumulate the appropriate partial
transmittances. In the simple case of homogeneous media,

partial transmittances are of the form et This ac-
cumulation continues until we reach an opaque medium
(then T' = 0) or reach a light and add the contribution
T - Liigh¢. In spatially varying media, transmittance can
be estimated with a binary estimator and samples from
distribution in Equation (7), e.g., with delta tracking

0, t >t (scattered),

1, (escaped). (13)

gr =

This approach works in general, but for the case of Gaus-
sian primitives, we can obtain closed-form expressions of
transmittance or, equivalently, the optical thickness. Con-
dor et al. [2] derive an expression for the optical thickness
along a ray through a Gaussian primitive. Based on dimen-
sional analysis, we believe the expressions in the paper
contain minor errors, and we present the corrected forms
below. The optical thickness of a single Gaussian along a
ray x' = x + tw, specified in the Gaussian’s local space,

363

analytic, £3¢

== {Eo}umana

r
5 &

coefficient o(z)
(=1
S

ray parameter s

analytic, £20 analytic, £1o

1.25
1.00 100 T===sz3--
0.75 0.75
0.50 0.50 /J \

0.25 0.25 4 ’ TN

0.00

ray parameter s

ray])‘dr‘dnl(‘,t()!' S
Figure 4: Analytic distance sampling for a Gaussian with differ-

ent cutoffs. (Top) Gaussian limited to a =3¢ ellipsoid. (Bottom)
Gaussians limited to +£2¢0 and 4-2¢ ellipsoids.

is

ot
Ti(x,xl)zogl)/ G xdt
0

oVe=Cr t-Co+Cy Cs
=———l|ef| —F | —erf | ——————
Amv/Co (2Co[%])? (2Co[Z))®
(14)

where Cj, C and (5 are constants depending on the start-

ing position of the ray x and direction w. Condor et al. [2]

give these values as

Co = S2Sw? + 8252w + S252w2,

o= C3 +Cy
! 2Co

2 o2 2 o2 2 o2
Cor = 2.5, 5w +ayS; S wy + 25,5 wa,

3

C3 = (a:iSi + xisf + a:iSi) wi — 2z, w, (myszwy + wwszww) s

Cy = wi (wiSf + wiSi) — mewzwmwyéf + w: (wisz + wiSi) .
(15)

With a closed-form expression for transmittance, we avoid
drawing random samples when evaluating direct lighting.
In overlaps, we multiply the transmittances of the partic-
ipating media T = TMWT(2) | T(nevenar) - In Figure 3,
we see that this transmittance matches the one computed
with the delta tracking estimator g7, just without the noise.

3.2 Closed-form distance sampling

Equation (14) can also be used to sample distance samples
according to PDF(¢) = o+(¢)T(x,x’). In a manner simi-
lar to homogeneous media, we pick a random & ~ U(0, 1)
and then invert the expression for optical thickness so that
7 = —log &. We follow the paper [2] and assume that the
start point of the ray x is well outside the Gaussian. Then
the second error function term in Equation (14) becomes

erf(—oc0) = —1, and we can write
47/ C t-Cy+ C
1 Y (log) = et PE0FC2) (16
o eC (2Co12)2

Figure 5: Rendering with closed-form distance sampling of 64
(left) and 256 (right) randomly placed Gaussians.

y

= 102 I T
g e
-
=] -<
or— -
+~
-
= 0
g 1004,
;E —8— dclta tracking
s =& analytic
gé 5 === O(nGaussians)
%10

T T T T T T T T
23 24 25 26 27 28 2() 210
num. g‘allssians

Figure 6: Execution times by the number of Gaussians. Render
time is dominated by casting of rays, it scales linearly with the
number of Gaussians and is almost identical for delta tracking
(in blue) and closed-form distance sampling (in red).

which can be inverted by simply applying the inverse error
function erf ~'. In Figure 4, we can see such closed-form
sampling for a single Gaussian, with different cutoffs.

4 Results

We implemented all sampling strategies described in the
paper in C. Scenes with randomly placed Gaussians (Fig-
ure 5) show that render time scales linearly with the num-
ber of Gaussians (Figure 6). Timing is dominated by ray
casting and remains similar across both sampling methods.
To achieve sub-linear scaling, Condor et al. [2] use GPU
hardware-backed acceleration structures. Our implemen-
tation currently lacks such acceleration structures.

Path tracing is embarrassingly parallel, enabling effi-
cient multithreading. Our CPU implementation splits the
image across threads, but naive pixel-index partitioning
causes some threads to finish much sooner than others. To
prevent this imbalance, we divided the image into 64 x 64
tiles and randomly shuffled the tiles between the threads
(Algorithm 2). This gives each thread a mix of easy and
hard work and improves thread utilization, as shown in
Figure 7.

Multithreaded performance suffered when using rand
from 1ibc, likely due to shared state (Figure 7). Switch-
ing to a PCG32 generator [7] and using thread-local state
fixed this issue and improved statistical properties.

Testing revealed issues with medium tracking, espe-
cially inside thin geometry. Due to floating-point errors,
rays can miss exit intersections, causing unbounded me-
dia. We attempted to fix this by ignoring closely spaced
intersections (closer than 10~?), but this fails for oblique
surfaces, leading to leaks. Rendering typical Gaussian

364

=& bands
—8— 64 X 64
=®— UNIX rand()

speedup

execution time [s]

12345

Figure 7: Timings (left) and relative speedup (right) for the
Gaussian test scene with 500 samples per pixel and different
numbers of threads. (In green) Naive partitioning of the image
into bands over a linear pixel-index. In purple, division into
64 x 64 randomly shuffled tiles. In blue, division into tiles, but
using rand () from libc instead of PCG32.

Algorithm 2 Shuffled tiles dispatch logic for one thread.

Initialize tile_shuffle as a random permutation
of integers from 0 to 64 x 64 — 1
for n =1 to Nyamples do
for n = Nfirst tile 1O Nast tile do
n < tile_shuffleln]
u,v <1 mod 64, |7/64]
Tstart; Lend LWU/64J) _W(’LL + 1)/64J
Ystart, Yend < I_HU/64J) _W(U + 1)/64J
for © = ZTgiart 1O Teng — 1 do
for Y = Ystart 1O Yend — 1do
render_pixel(z, y)

splatting datasets (in the order of 105 Gaussians) in min-
utes would require a 100x speedup, ideally via GPU in-
tegration using hardware-accelerated ray casting. Future
work would involve adding appropriate acceleration struc-
tures and possibly porting the implementation to the GPU.

5 Conclusion

We presented a volumetric path tracing formulation for
rendering Gaussians, noted an error and suggested a cor-
rected form of equation (14) from Condor et al. [2]. Future
work includes fixing numerical issues, adding acceleration
structures and improving parallelization using a GPU.

References

[1] E. Veach. Robust Monte Carlo methods for light transport
simulation. Stanford University, 1998.

[2] J. Condor et al. “Don’t Splat your Gaussians”. In: ACM
TOG (2025).

[3] B.Kerbl et al. “3d gaussian splatting for real-time radiance
field rendering.” In: ACM TOG (2023).

[4] 1. T. Kajiya. “The rendering equation”. In: Proceedings
of the 13th annual conference on Computer graphics and
interactive techniques. 1986.

[5] J. Novdk et al. “Monte Carlo methods for volumetric light
transport simulation”. In: Computer graphics forum. 2018.

[6] M. Pharr, W. Jakob, and G. Humphreys. Physically based
rendering. 4th ed. MIT Press, 2023.

[71 M. E. O’Neill. “PCG: A family of simple fast space-
efficient statistically good algorithms for random number
generation”. In: ACM TOMS (2014).

