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Uvod

V nalogi se bomo zanimali za transport svetlove skozi volumetricne objekte, ki svetlobo absorbirajo in
sipajo, npr. skozi sloje polprosojnih pigmentov, nanesenih na povrsino neprosojnega objekta. Ceprav
je svetloba valovanje in je njen opis podan z valovno enacbo, bo za naSe potrebe zadosten priblizek
geometrijske optike, ki ga lahko gledamo kot limito nizkih valovnih dolzin, kjer zanemarimo uklon in
interferenco. Taksna limita je formalizirano preko ikonalne enacbe, ki jo lahko izpeljemo iz Maxwellovih
enacb [l, stran 117], ko gre A — 0. Uporabo taksne limite lahko v upravi¢imo s tem, da bo valovna
dolzina majhna v primerjavi z karakteristicnimi razdaljami, na katerih se spreminjajo lastnosti snovi.

V nadaljevanju bomo v limiti geometrijske optike transport svetlobe prevedli na opis z zarki, nato pa
tega prevedli na obliko visokodimenzionalnega integrala, primernega za izracun z Monte-Carlo integracijo
na ra¢unalniku. Dodatno, svetloba, ki jo izseva klasi¢na ali LED zarnica, vsebuje mnogo valovnih dolzin.
V zacetku nasa diskusija predpostavila, da imamo opravka z monokromatsko svetlobo. To bomo brez
posebnih tezav v razdelku posplosili na primer, kjer svetloba vsebuje ve¢ valovnih dolzin. Zanimala
nas bo tudi barva in vizualni izgled taksnih pigmentov oz. objektov, na katere so naneseni. Tu bomo
morali povedati nekaj osnov o tem, kako je koncept barve kvantitativno definiran. Ceprav je prehod
konceptualno preprost, je pravilen prikaz vseeno nekoliko tezaven, saj je ¢loveski vid nelinearen, poleg
tega pa raCunalniski monitor prikazuje RGB trojice v obsegu [0, 1], z omejenim dinami¢nim razponom
prikaza.

1 Transport svetlobe vzdolz zarkov

Osnovni koncept geometriﬂ'ske optike so zarki, t. j. krivulje pravokotne na valovne fronte, lokalno vzpore-
dne z valovnim vektorjem®. Vzdolz zarkov tece energijski tok svetlobe. Predpostavimo, da imajo mediji,
po katerih bomo propagirali svetlobo, homogene lomne koli¢nike. Tedaj so zarki, ki jih obravnavamo, od-
sekoma ravni; smer spremenijo le na stikih medijev z razlicnimi lomnimi koli¢niki, po Snellovem lomnem
zakonu.

Ce v mediju ne bi imeli absorpcije ali sipanja, bi se energija vzdolz ravnih Zarkov ohranjala. Definirati
moramo primerne radiometri¢ne fizikalne koli¢ine, s katerimi opisujemo Sirjenje svetlobe vzdolz zarkov.
Zarkov je namre¢ v prostoru nestevno mnogo, in ¢e bi vsakemu pripisali neko konéno moé, bi bila skupna
mo¢, ki vpada na neko povrsino, neskonc¢na. Predstavljajmo si, da imamo sfericno svetilo, ki oddaja mo¢
® [W]. Ta moc oz. sevalni tok (ang. radiant fluz) izvira iz povrSine svetila, torej je naravno definirati
izsevanost (ang. radiant exitance) na povrsino kot

M= g—j, izsevanost [Wm™?],
podobno lahko tok na enote povrsine pripiSemo povrsinam, ki so osvetljene, kar poimenujemo obsevanost

(ang. irradiance)

E= 8—37 obsevanost [Wm™?].

Da se izognemo tezavam v razumevanju, je potrebno razloc¢iti med povrsinama 9 A osvetljene povrsine
in 0A; svetila. V tej distinkciji se ponuja povsem geometrijsko razumevanje tega, zakaj je obsevanost

1V tej nalogi se izognemo diskusiji dvolomnih medijev, kjer Poyntingov vektor ni nujno vzporeden z valovnim vektorjem.
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(a) Povrsina 0 A, osvetljena s svetlobo, ki vpa- (b) Povrsina svetila 0As, ki jo zapuscajo zar-
da zgolj pod kotom 6. ki, parametrizirani s kotom 6.
Slika 1

povrsine odvisna od kota, pod katerim jo osvetljujemo. Recimo, da je povrsina JA na skici @ osvetljena
s kolimirano svetlobo ali tockastim svetilom, tako da svetloba na povrsino v tej tocki vpada le pod enim
kotom. Tedaj je svetlobni tok, izsevan iz povrsine svetila 0 A, porazdeljen na vecjo povrsino 0A = 30‘5159 in
obsevanost je sorazmerna izsevanosti svetila z faktorjem cos(6). Najvedja je, ko je osvetlitev pravokotna,
t. j. vzporedna z normalo. Taksno razumevanje, kjer svetloba vpada le pod enim kotom 6 je potrebno
posplositi na primer, ko vpadna svetloba izvira iz razseznega svetilad in ni kolimirana. V takem splosnem

primeru svetloba na osvetljeno povrsino vpada pod mnogimi razlicnimi koti, z zarkom za vsakega izmed

kotov 6 € [ R 2} Da opisemo skupek zarkov, ki osvetljujejo povrsino pod razli¢nimi koti, definiramo
novo koli¢ino, sevalnost (ang. radiance)
9?®
L(x,w) = TodAL sevalnost [Wm ™2 st~ 1], (1)

ki pripada posameznim smerem w = (0, @), iz katerih je povrSina osvetljena. Definirana je kot diferen-
cialna koli¢ina, ki pripiSe gostoto sevalnega toka 8‘?4% [Wm™2] majhnemu stozéastemu skupku zarkov, ki
oblikujejo stozec sferiénega kota dwH okoli osrednje smeri w. Energijski tok poteka torej vzdolz zarka, v
smeri w in je enak g L = L(x,w) - A+ za neko testno povrsino A+, pravokotno na smer zarka (glej
skico [1H).

Primer 1. Za kolimiran vir svetlobe (npr. z le¢o kolimirano tockovno svetilo), so vsi zarki vzporedni in
usmerjeni v eno smer, imenujmo jo smer wyo1. Tedaj je sevalnost oblike L(x w) = 8(?4 0 (w— wkol) tako

da je gostota takSnega usmerjenega sevalnega toka enaka a A 0 f 1 L(x,w) dw. Gostota 8 a o [Wmfz}
kljub enotam ni obsevanost ali izsevanost, temvec je nekaj drugega — je lastnost kolimiranega snopa
zarkov.

Osnovne relacije med L, M in E. Pomembno je, da razumemo osnovno razliko med sevalnostjo L,
ki je lastnost zarkov, in koli¢inama M, E. Izsevanost M in obsevanost E sta kolic¢ini, ki sta smiselno
definirani zgolj na povriinah, ne pa tudi v praznem prostoru ali drugem mediju. Ce povrsino osvetljujejo
zarki z sevalnostmi L(x,w), bo obsevanost povrsSine z zarki iz smeri w = (6, ¢) enako

0°®
DA

Celotna obsevanost je integral po vseh smereh mozne osvetlitve, tipicno po hemisferi

E(x):/2 dE(x,w). (3)

dE(x,w) = = L(x,w) cos(6)Ow, cos(f) = |w - n|, (2)

Povsem analogno je definirana izsevanost, le za povrsino na svetilu 9 A, in normalo ngyetila (glej skico @)
V diferencialni obliki je izsevanost v smer w = (65, ¢) enaka

82
A,

2V nasprotju z tockastim svetilom, kjer ima svetloba le eno smer (proti svetilu) za vsako tocko na osvetljeni povrsini.
38feriéni kot merimo v steradianih [sr] kot povrsino, zaobjeto na enotski krogli. Nekoliksna zloraba notacije je v tem,
da z w oznad¢imo smer, podano v sferi¢nih koordinatah s kotoma (6, ¢), hkrati pa z dw oznacujemo kot okoli te smeri.

dM (x,w) = = L(x,w) cos(6s) 0w, cos(fs) = |w - Dgyetilal-
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Slika 2: Poteki Monte Carlo integracije sevalnosti po stevilu vzorcev. (Zgoraj levo) 50 lo¢enih integracij in
njihovo povpreéje (temno modro). (Zgoraj desno) Narisano je odstopanje posameznih potekov integracije
od najbolj tocne izracunane vrednosti. Standardni odklon 6 ansambla 50 integracij (vijoliéno) pada z

1
VN’ A
modro) lahko precej dobro zadanemo z izra¢unom standardne napake SE = \/% (manj temno modro).

kot pricakujemo za Monte Carlo metodo. Oceno napake izracunanega povpreéja (najtemnejse

(Spodaj) Slike krogle absorpcijsko-sipalnega medija za razli¢no Stevilo vzorcev.

To lahko integriramo po prostorskem kotu in dobimo izsevanost iz tocko na svetilu x kot

M(X):/z dM (x,w). (4)

Primer 2. Predstavljajmo si neskon¢no ravnino, ki seva kot idealno ¢rno telo. Sevalnost v blizini
taksnega svetila je nenicelna v zgornji hemisferi in je izotropna, neodvisna od kota w. Izsevanost na
povrsini ravnine podana z integralom W, ki se zaradi izotropnosti radiance in translacijske simetrije
neskonéne ravnine L(x,w) = L, poenostavi kot

M((x) = dM (x,w) = L/ cos(0s)0w = wL.

2m 2T

Radianca je torej preproste oblike

Lix,w) = M- % w v zgornji hemisferi ’ _ 87<I>
0 w v spodnji hemisferi 0A

Sevanje takega svetila upoSteva Lambertov kosinusni zakon [, str. 195], po katerem je jakost sevanja,
izsevana v prostor pod kotom € glede na normalo, sorazmerna s kosinusom kota z normalo cos 6. Jakost
sevanja je mo¢ na prostorski kot, diferencialno definirana kot dI(x,w) = Q;—w‘b = Lcos(05)0As. V zgornji
hemisferi, kjer je L konstanten, tedaj velja Lambertov kosinusni zakon

IHw) =dI(x,w) = / dI(x,w) = L/ cos(0s)0A; = LA, cos(by), Lambertov kosinusni zakon.
A, A

s
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Slika 3: Poteki Monte Carlo integracije z dodatkom veé-pomembnostnega vzoréenja (multiple importance
sampling oz. MIS) sevalnosti po Stevilu vzorcev. Slika je namenjena primerjavi z sliko ED, v primerjavi
s katero je konvergenca mnogo hitrejsa. Sam trend ostaja ﬁ, a konstanta variance je mnogo manjsa.

Oblike krogel absorbcijsko-sipalnega medija (spodaj) so prepoznavne Ze z nekaj vzorcih, mnogo bolje kot
pri 1000 in ve¢ vzorcih brez uporabe veé-pomembnostnega vzorcenja.

Sevalnost (ang. radiance) je torej osnovna koli¢ina, ki opisuje usmerjen tok svetlobe vzdolz Zarkov.
Parametrizirana je glede na posamezne zarke, torej jo lahko razumemo kot funkcijo na prostoru vseh
zarkov (x,w) — L(x,w). V mediju brez absorpcije in sipanja se sevalnost vzdolz zarkov ohranjaf, kar
formalizira izrek o sevalnosti [9, pogl. 5.5]. Transport svetlobe smo prevedli na opis z zarki, ki ga bomo
v nadaljevanju razsirili, da bo vkljuceval sipanje in absorpcijo.

1.1 Absorpcijsko-sipalni model

V opisu transporta svetlobe z zarki smo zaenkrat izvzeli absorpcijo in sipanje svetlobe na gradnikih, ki
sestavljajo medij. Vpliv absorpcije na transport svetlobe vzdolz zarka opisuje preprosta diferencialna

enacba
(w-V)L(x,w) = —04(x)L(x,w), absorpcija, (5)

pri éemer je o4(x) [m~1] absorpcijski koeficient medija. Po drugi strani je uéinek sipanja dvostranski.
Svetloba se na gradnikih medija iz zarka sipa navzven; t. i. od-sipanja (ang. out-scattering) sevalnost
zmanjsSuje na enak nacin kot absorpcija

(w-V)L(x,w) = —0s(x) L(x,w), od-sipanje, (6)

le da koeficient absorpcije nadomestimo z koeficientom sipanja os(x). Poleg od-sipanja se svetloba na
gradnikih sipa iz drugih smeri w’ # w. Do-sipanje zarku dovaja sevalnost, ko svetloba potuje vzdolz
njega (w- V)L(x,w) = S(x,w), pri ¢emer je do-sipalni integral S(x,w) definiran kot

Sxw) =0s(x) [ o(x,w,w)L(x,w) o, (7)

4

4Zares se ohranja koli¢ina L = L/n?, tako imenovana osnovna sevalnost (basic radiance). A v nasi nalogi vseskozi
predpostavljamo, da je lomni kolicnik n posameznih medijev homogen, torej se zares ohranja L. Za dokaz ohranitvenega
zakona v posploseni obliki glej [E, str. 116].



Po kotu ¢ med svetilom in opazovalcem, polna krogla belega pigmenta
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Slika 4: (a) Postavitev svetila in opazovalca, ki meri sevalnost. (b) Kotna odvisnost sevalnosti po
kotu ¢ med kroglastim svetilom in opazovalcem. Svetilo je kroglasto z radijem 1 in postavljeno pri
(10,0,0), opazovalec pa kot na sliki (a), na polovici te oddaljenosti od izhodis¢a. Pri zadostno majhnih
sipalnih presekih oy je svetilo vidno skozi kroglo, to vidimo v ostrem Skatlastem vrhu pri kotu ¢=, kjer
je sevalnost enaka tisti na povrsini svetila (t. j. Lo = 1000). Pri vecjih sipalnih koeficientih se sevalnost
iz tega centralnega vrha prerazporedi v druge smeri, tako da vedno bolj preferira izstop blizu tocke, kjer
je v telo vstopil. Dobimo znagcilno obliko, kjer je telo na ”skozi” (¢ = m) vedno manj prosojno, odboj
(okoli ¢ = 0) pa se vedno bolj priblizuje obliki  cos ¢, znaéilni z Lambertovo povrsino (razmerje med
L10000 in Lyambert je narisano v rdecih trikotnikih).

torej seSteje prispevke vsem smeri w’, iz katerih se svetloba do-sipa v na$ zarek (x,w). Ko svetloba
potuje vzdolz zarka, parametriziranega kot x’ = x + wt (pri Gemer je t zarkovni parameter oz. pot
vzdolz zarka), se torej_absorbira in sipa. Celotni opis teh dveh procesov opisuje tako imenovana enacba
sevalnega transporta [2] (ang. radiative transfer equation), ki zdruzuje absorpcijo in sipanje

(UJ ' V)L(x,w) = 7O'a(X)L(X,w) - GS(X)L(X7W)+O'S(I) (rb(waw/)Li(xa w/) dw+e(wi)7 (8)
4im ~~——
absorpcija in od-sipanje, emisija

do-sipanje S(x,w)

skupni oy = 04 + 05

prvi ¢len enacbe je atenuacija svetlobe z skupnim koeficientom o; = 0,40, drugi pa predstavlja pozitivni
prispevek do-sipanja. Dodali smo tudi ¢len e(x,w), ki predstavlja emisijo v snovi; tega ¢lena v tej nalogi
ne bomo upostevali, je pa njegova obravnava relativno preprosta.
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Slika 5: Odvisnost izgleda od kota osvetlitve, postavitev kot na sliki Ha. Krogla absorpcijsko-sipalnega
medija (04,0,) = (16,0).



1.2 Integralska formulacija transporta

Diferencialno enacbo sevalnega transporta (E) zelimo resiti numeri¢no, z uporabo racunalnika. To bomo
dosegli z Monte Carlo integracijo, to¢neje z algoritmom sledenja potem (ang. path tracing). Monte
Carlo integracija je v osnovi tehnika za vrednotenje visoko dimenzijskih integralov, zato je potrebno
diferencialno enacbo prvo prevesti na integral. Taksna integralska formulacija transporta svetlobe je
bila prvo formuliran za trdne povrSine (ne presevne medije, ki zanimajo nas) sicer z slavno enac¢bo
upodabljanja (ang. rendering equation) [B]. Sledenje potem in njegove razlifice predstavljajo jedro vseh
tehnik za fizikalno osnovano upodabljanje in se siroko uporabljajo pri produkciji filmov, iger in ostalih
medijev.

V tej nalogi se osredotocamo na presevne medije. Tu bomo resevali drugo integralno enacbo, ki jo
lahko izpeljemo z integracijo enacbe sevalnega transporta (§). Tako imenovana volumetri¢na enacba
upodabljanja (ang. volumetric rendering equation) izraza sevalnost v neki tocki kot integral absorpcije
in sipanja vzdolz zarka

tizstop
L(x,w) = /0 T(x,x") [S(x“w) + e(x’)} dt + T(X, Xizstop ) L (Xizstop, W), (9)

pri Cemer je tiztop zarkovni parameter, pri katerem iz medija izstopimo v vakuum, faktor T'(X, Xizstop)
pa je atenuacija po poti med X in Xizstop = X + Whizstop, definirana kot

T(x,%) = T(0,) = /0 ou(t') dt, (10)

pri Cemer je 0¢(x) = 04(x) + 05(x) skupni atenuacijski koeficient absorpcije in od-sipanja.

2 Monte Carlo integracija

Integralska enacha (a) je resljiva z uporabo Monte Carlo integracije. Ce ponovimo — za sploSen integral
oblike

1= [ 1@z,

lahko skonstruiramo Monte Carlo oceno s tem, da vzor¢imo in ra¢unamo primerno povprecje integranda,
za vzorce iz neke porazdelitve z ~ PDF(x)

kjer je g Monte Carlo cenilka za integral I, tako da njena pricakovana vrednost (I) = + >, g(x;)
konvergira proti I. Napaka taksne integracije se zmanjsuje s Stevilom vzorcev N kot 1/ V'N, vendar
konstanta 1/Var(g) mo¢no zavisi od izbire porazdelitve vzoréenja, kot bomo videli pri uvajanju vec-
pomembnostnega vzoréenja (razdelek P.4).

Zarki iz kamere ali Zarki iz svetila. Ceprav je morda filozofsko bolj pravilno razumeti, da svetloba
izvira iz svetila, nam enacba fJ ne predpisuje, v kateri smeri moramo zarkom slediti — podaja le rekurzivno
zvezo, s katero se sevalnost vzdolz takih zarkov propagira. Formalno je enako, Ce integral J zacnemo
vrednotiti iz smeri svetila ali iz smeri opazovalca, le vzorciti moramo po prostoru moznih poti med njima.
Ker velik del zarkov iz svetila (kako velik je odvisno od geometrije) nikoli ne doseze opazovalca, je bolj
ugodno, da zarkom sledimo iz smeri, kjer sevalnost opazujemo. Taksno vzoréenje je Se vedno zagotovljeno
nepristransko, a tipi¢no konvergira mnogo hitreje kot ¢e bi zarki pot zaceli na povrsini svetil.

2.1 Konstrukcija cenilke

Direktno iz volumetri¢ne enacbe upodabljanja (E) lahko zapiSemo osnovno obliko cenilke. Ce ocenjujemo
sevalnost v tocki x v smeri w, bomo vzor¢ili zarkovni parameter ¢t ~ PDF(t) vzdolz zarka x’ = x + wt in
integrand ocenili kot

L PDF(t)

oznan S(x',w) in L(Xizstop,w T O,t
g(p o) Fisson ) ( ) : S(Xlaw) + T(Oaﬁizstop) : L(Xizstopaw)~ (12)



Po kotu ¢ med svetilom in opazovalcem, beli pigment na ¢rni krogli Po kotu ¢ med svetilom in opazovalcem, beli pigment na zrcalni krogli
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Slika 6: Kotna odvisnost sevalnosti za kroglo, znotraj katere je postavljena manjsa krogla z radijem
0.9, ki pod slojem belega pigmenta vsiljuje nek robni pogoj. (Levo) Robni pogoj ¢érne povrsine, kjer je

notranja krogla idealni absorber, torej je sevalnost na meji z notranjo kroglo L = 0. Za majhne sipalne
koeficiente je
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Slika 7: Odvisnost izgleda od kota osvetlitve, postavitev kot na sliki Ha. Na ¢rni krogli je nanos
absorpcijsko-sipalnega medija (o5, 0,) = (8,0).
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Slika 8: Odvisnost izgleda od kota osvetlitve, postavitev kot na sliki Ha. Na zrcalni krogli je nanos
absorpcijsko-sipalnega medija (o5, 0,) = (8,0).



Cenilke (@) ne moremo izvrednotiti, saj ne poznamo toc¢ne vrednosti do-sipalnega integrala S(x,w).
Podoben problem imamo s tem, da ne poznamo sevalnosti L(Xisstop,w). Zato zapiSemo Monte Carlo
cenilko za do-sipalni integral, sicer kot

(poznan L(x',w)) _ Os (x’)¢(x’,w, w/)
9s =

DR O 18)

kar lahko razumemo kot vzrocenje integrala po sferi (H) s tem, da vzor¢imo smeri dohodnih zarkov
w’ ~ PDF(w’). Prav tako, kot pri prvo zapisani cenilki (l2) nismo poznali S, tokrat ne poznamo
L(x',w). To razresimo z rekurzijo, tako da cenilki gg in g, zdruzimo v eno rekurzivno cenilko

Os (Xl)¢(xlv w, w/)
PDF (/)

(0, 1)
gL = TF(t) : gS(xlvw) + T(O»tizstop) gL (xizstopaw)v gs =

gr(xW), (14)

pri ¢emer je rekurzivnost v tem, da smo L(Xisstop,w) iz cenilke (@) ocenili na enak naéin kot zadetni
L(x,w), le z X' — Xizgpop. Prav tako gs spet vsebuje cenilko gz, le z w — w’.

2.2 Vzorcenje medija

Taksna rekurzivna cenilka (@) je pripravna za implementacijo na rac¢unalniku. Zavoljo uéinkovitosti
jo je relativno preprosto prevesti na iteracijo, kjer akumuliramo faktor prepustnosti in se izognemo
dejanski rekurziji. Vse kar je potrebno razresiti, je u¢inkovito zrebanje vzorcev iz zelenih porazdelitev.
V homogenem mediju, ki ga bomo obravnavali vecino te naloge, je inverzom CDF funkcije preprosto
vzorciti zarkovne parametre ¢ iz porazdelitve

PDF(t) = oy - € ", homogen medij. (15)

Pomaga nam dejstvo, da je ta porazdelitev sorazmerna s prepustnostjo T(X, Xizstop) = € 7t%, kar je
povsem naravno pomembnostno vzorcenje; zagotovi, da je cenilka bolj konstantna in zmanjsa varianco.
Pri vzorcéenju iz porazdelitve (L) se cenilka Se dodatno poenostavi kot

(16)

1 . .
o = A gs(x',w) t < tizstop, Zarek sipan .
T(0, tizstop) - 9L (Xizstop,w) Zarek pobegne iz medija

Poleg zarkovnih parametrov ¢ potrebujemo vzoréiti Se smeri w’ za vrednotenje cenilke do-sipalnega in-
tegrala S(x,w). Ce je medij izotropen, je fazna funkcija ¢(w) = ;- zopet lahko z metodo inverza CDF

4T
vzor¢imo naklju¢ne smeri na sferi w’ ~ ﬁ.

2.3 Implementacija

Algoritem sledenja potem sem implementiral v C programskem jeziku. Zanimiv tehnicen problem je
predstavljalo u¢inkovito generiranje nakljuénih stevil. Funkcija rand (), ki je dostopna na UNIX sistemih,
ima namrec¢ neko deljeno stanje, ki znatno upocasni program, izvajan v veé nitih (glej sliko B) Kot resitev
tega sem uporabil generator PCG32, opisan v [10], z _Thread_local stanjem generatorja.

2.4 Vecé-pomembnostno vzorcenje

Kot vidimo na sliki E spodaj, je konvergenca za sliko absorpcijsko-sipalnega medija zelo pocasna, kon-
stanta /Var(g) je tako velika, da potrebujemo vsaj N = 1000 oz. ve¢ vzorcev na piksel (in na posamezen
spektralni kanal) da sploh vidimo prepoznavno obliko krogle. Problem je v tem, da je nase svetilo rela-
tivno majhno (r = 1/10, na oddaljenosti R = 10) in da ga velika vecina Zarkov ne doseze. Ta problem
bomo razresili z uporabo veé-pomembnostnega vzorcéenja (ang. multiple-importance sampling oz. MIS),
ki ga je za sledenje potem prvi izrazil Veach v svoji doktorski disertaciji [12].

Osnovna ideja pomembnostnega vzorcéenja je slednja. Namesto, da zarke vzor¢imo izotropno v vse
smeri po w’' ~ PDFy,na(w’), kot to narekuje nasa izotropna fazna funkcija ¢(x, w, w’) = ﬁ , bomo poleg
tega vzordili Se iz ene porazdelitve PDFg,e411, ki predstavlja sevalnost vseh svetil v izbrani geometriji. Na
vsakem koraku vrednotenja cenilke gg torej vzorcimo dve smeri zarka

wé ~ PDFgyetil (w/)a w:b ~ PDFfazna(w,)a

5Fazna funkcija é(x,w,w’) je zavoljo ohranitve energije v sipalnih procesih normirana kot f4ﬂ o(x,w,w’) dw’, torej ze
predstavlja verjetnostno porazdelitev za vzoréenje, najbolj primerna za PDFg, . (w') = ¢(x,w,w’).
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Slika 9: Hitrost izvajanja z vecanjem Stevila niti. PCG generator ne kaze iste upocasnitve kot UNIX
rand(). Z zeleno je narisan nacin deljenja dela, kjer piksle med niti razdelimo deterministicno po
enem linearnem indeksu. 7 vijolicno piksle pred tem premesamo, da zagotovimo ”posteno” in tako bolj
ucéinkovito delitev dela.

nato pa oba vzorca zdruzimo v novo izboljSano ve¢-pomembnostno (MIS) cenilko

D2, w,w)) D2, w,wh)

MIS MIS/, ./ [hadieg’s o MIS, 7 (et had ro

g =w wy) - - L(x',wy) +w . - L(x'wg), 17
S 14 ( @) PDFsvetil(wé) ( @) P ( <I>) PDFfazna(w&)) ( <I>) ( )
pri ¢emer sta w)™S in wiS primerne utezi, t. i. balance heuristic [12], definirane kot

B PDF gyetil (w)
~ PDFyetil(w) + PDFfagna(w)’
_ PDFtypna(w)
"~ PDFfagna(w) + PDFyyen(w)

wp (W)

wit (W) (19)

Iz definicije utezi @ vidimo, da je prispevek vzorca iz vsake izmed porazdelitev obtezen z relativno
verjetnostjo, da je bil ta vzorec izzreban. Ko je vzorcena smer pomembna za prispevek v smeri svetil, je
torej vecji prispevek prvega clena, ¢e pa v izbrano smer ni svetil, je prispevek prvega ¢lena enak 0.
Implementacija ve¢-pomembnostnega vzrocenja znatno pohitri konvergenco. Sam trend upadanja
variance je Se vedno Tlﬁ’ a konstantni faktor je mnogo manjsi, kot vidimo s primerjavo integracije z in

brez uporabe ve¢-pomembnostnega vzorcenja (MIS) na slikah E z in E

3 Izgled in zanimive funkcijske odvisnosti

3.1 Kotna odvisnost sevalnosti

V preprosti geometriji si bomo pogledali, kako absorpcijsko-sipalni medij vpliva na kotno odvisnost
prepuscene in odbite svetlobe. V izhodisce postavimo enotsko kroglo belega pigmenta, t. j. materiala, ki
svetlobo le sipa brez absorpcijske. Nato pod kotom ¢, kot je to prikazano na sliki fa, kroglo osvetlimo z
majhnim kroglastim svetilom. Izracunana kotna odvisnosti sevalnosti za polno kroglo belega pigmenta je
narisana na sliki gb. Glede na vrednosti sipalnega koeficienta opazimo, da je svetilo pri vecjih vrednostih
o5 manj vidno skozi kroglo (na sliki fb desno vidimo po kotu integrirano intenziteto, ki pada z o). Veéina
sipane sevalnosti zapusti kroglo v smereh stran od opazovalca, a nek delez se prerazporedi v mehek odboj
na strani svetila. Kot smo zZe videli na sliki L0, tak odboj sovpada z medijem, kjer je povprecna prosta
pot kratka — v takem primeru je mnogo bolj verjetno, da bo svetloba medij zapustila na tocki, ki je
blizu tocke, kjer je v medij vstopila. Znacilna oblika za s — oo je vedno bolj podobna Lambertovemu
odboju, ki je sorazmeren z cos ¢. Torej lahko razumemo, da se zadostno gost sipalni medij za svetlobo
obnasa kot "trd” objekt z difuznim odbojem.

Zanimivo je pogledati vpliv pigmenta na sipanje svetlobe v primeru, da beli pigment nanasamo na
neko povrsino, ki ze ima svoje opti¢ne lastnosti. Na sliki f§ beli pigment nanesemo na ¢rno kroglo, t. j.
na idealni absorber svetlobe, ki ima na povrsini sevalnost L = 0. S tem postaja ¢rni objekt vedno bolj
odbojen, z o5 — 00 se priblizuje Lambertovemu profilu difuznega odboja. Drug zanimiv robni pogoj
vidimo na sliki f desno, kjer je beli pigment nanesen na zrcalno povrsino, kjer je odboj singularen po
kotu (kotna porazdelitev odbite svetlobe je Diracova delta funkcija okoli preko normale prezrcaljenega
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Slika 10: Sipanje 256 vzorcev (zarkov) za tri monokromatske absorpcijsko-sipalne medije oz. tri kompo-
nente veé-kromatskega (RGB) medija. Zarki zacénejo pot pri (0,1,0), obrnjenem naravnost navzdol, v
smer (0,—1,0). Po vstopu v medij se svetloba sipa in absorbira razli¢no, glede na koeficienta o,,0,. Z
nasifenjem barve in desno zgoraj v manjsih sli¢icah je prikazana sevalnost, ki jo Se nosi ta zarek. (Levo)
Sibko sipalni medij brez absorpcije (o5, 04) = (1,0). Vidimo, da se je prosta pot relativno dolga, seval-
nost pa se vseskozi ohranja. (Sredinsko) Mocno sipalni medij brez absorpcije (0s,04) = (5,0). Prosta
pot je v tem meniju priblizno 5-krat krajsa, Zarki le plitvo vstopajo v povrsino medija. (Desno) Sibko
sipalni medij z absorpcijo (os,0,) = (%, %) Ker je skupni atenuacijski koeficient o, = o, + 05 enak kot
v mediju brez absorpcije (levo), je povprena pot v mediju enaka (Zarki postajajo bolj sivi, glej tudi 3
desno zgoraj), a zaradi absorpcije sevalnost vzdolz poti zarkov eksponentno upada.
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Slika 11: Krogla absorpcijsko-sipalnega medija z tremi (RGB) komponentami koeficientov oy =
(1, 100, % in o, = (070, %) Kvalitativno so obnasanja treh spektralnih komponent podobna mediju
na sliki [L(, a mocno sipanje zelene komponente je Se bolj poudarjeno. Slike so posnete pod razli¢nimi
koti opazovalec-svetilo (skica Ha). Vidimo, da je odboj zelen, prepuscena svetloba pa je pretezno rdeca,
z nekoliko modre komponente (torej rdece-vijoliéna).
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Slika 12: Nanos absorpcijsko-sipalnega medija na zrcalni krogli. Medij je enak kot na sliki EI, svetilo pa
je 8-krat vecje.
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Slika 13: (a) Poti 256 zarkov za enak tro-kromatski medij kot na sliki @, z dodatkom tega, da imamo
pod povrsino medija dodane Se robni pogoj Lambertovega odboja. (b) Tro-kromatski medij iz slike (a)
v postavitvi z lu¢mi rdece, zelene in modre barve. Vidimo, da rdeca komponenta globoko prodre v pol-
prostor pod kroglo, medtem ko je Siritev zelena komponenta mnogo bolj omejeno, vecji del se je odbije.
Se bolj jasno se to vidi, ko dodamo katle, ki zamejujejo posamezna svetila. Zelena komponenta medce
izrazito senco, rdeca pa brez tezav prodre skozi medij pod skatlo. Modra komponenta podobno kot rdeca
prodira globoko v medij, a se pri tem tudi znatno absorbira, torej je soj manj svetel. (c) Enako kot slika
(b), le v sivih tonih lo¢ene rdece, zelene in modre barve za lazjo primerjavo.
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vpadnega kota). Skatlast vrh odboja je namesto pri kotu ¢ = 7 premaknjen na kot ¢ = 0, torej se
zrcalni in mehki (Lambertov) odboj prekrivata. Tak kombiniran odboj je znacilen za mnogo objektov v
resni¢nem svetu, kot bomo videli v razdelku f. Poleg presekov v ravnini § = 7/2 si na slikah [, [] in
pogledamo sSe dejanske izglede krogel za polno kroglo in nanose na ¢rno oz. zrcalno kroglo.

3.2 Nanosi monokromatskega pigmenta

Pogledamo si lahko tudi kako absorpcijsko-sipalna koeficienta vplivata na izgled odbite svetlobe. Najbolj

preprosto lahko to preverimo v geometriji ravne plasti neskonéne debeline (kot na sliki v katero
posiljamo zarke. Odbita sevalnost v odvisnosti od razmerja 7 = 2= je narisana na sliki za kroglo
absorpcijsko-sipalnega materiala in na sliki za nanos na ¢rni ter zrcalni podlagi. Razmerje r je

relevantno, ker nastopa kot edini parameter v Kubelka-Munk teoriji [6], kjer je odboj od neskonc¢no
debelega sloja absorpcijsko-sipalnega materiala podan kot

REM =1 47— \/r2y2r, r=22 (20)

Os

Na sliki @ desno in na sliki @ vidimo vpliv razmerja r Se v krogelni geometriji, kjer je simetrija na
skaliranje zlomljena.

3.3 Simulacijo vec¢-kromatske svetlobe

Zaenkrat smo simulirali le transport za eno spektralno komponento svetlobe. Posamezne spektralne
komponente pa se Sirijo povsem neodvisno, zato je razsiritev na vec-kromatsko svetlobo zelo preprosta.
Preden se posvetimo psihofizioloskim odzivnim funkcijam in izmerjenim absorbcijsko-sipalnim spektrom
si poglejmo prototipni material, ki rdeco svetlobo Sibko sipa, zeleno mocéno sipa, modro pa sipa in
absorbira. Na sliki @ vidimo poti zarkov po vstopu v medij, kjer vidimo, kako se Sirijo razlicne spektralne
komponente. Na sliki levo dodamo pod povrsino medija Se trdno povrsino z Lambertovim odbojem.
Na slikah desno in in pa izgled polne krogle in nanosa na zrcalno kroglo po razlicnih kotih
osvetlitve.

4 Izgled preko izmerjenih absorpcijsko-sipalnih spektrov

4.1 Prehod iz spektra na barvo: XYZ in sRGB barvna prostora

Da bomo prikazali izgled sevalno-absorpcijskih materialov zelimo spekter odbite svetlobe preslikati v
barve. Barvni prostor je standard, osnovan na psihofizicnih meritvah, kjer je opaZena svetloba opisana
s tristimulusnimi vrednostmi

X:/L(A).Y(A)dA, Y:/L()\)-?(A)d/\, Z:/L(A)~7(>\)d)\. (21)

Odzivne funkcije X,Y in Z izhajajo iz psihofiziologkih eksperimentov [[13, 8], kjer so opazovalci gledali
razdeljeno polje. Na eni polovici je bil monokromatski drazljaj, na drugi pa prilagodljiva mesanica
treh osnovnih barv. Z uravnavanjem intenzitet so dosegli metamerijo, t. j. enak izgled barv, ko so
tristimulusne vrednosti obeh spektrov enake. Odzivne funkcije X()),Y()\) in Z()\) za CIE1931 barvni
prostor [4] vidimo na sliki [L9 levo zgoraj.

Tako dobljene funkcije so podlaga za transformacijo v druge prostore. Ker bomo barve prikazovali na
racunalniskem zaslonu, moramo barvo preslikati v sSRGB prostor. V dokumentu [[11] so podane vrednosti

te linearne preslikave iz XY Z CIE1931 prostora v sRGB prostor kot

RsraB 3.2410 —1.5374 —0.4986 X
Gsrap | = | —0.9692  1.8760 0.0416 YI|. (22)
Bsren 0.0556 —0.2040 1.0570 Z

Kot odraz omejene izbire primarnih_barv (tehnologka omejitev) odzivne funkcije R, G in B zavzemajo
tudi negativne vrednosti (glej sliko [Lg levo spodaj). Eksperimentalno to predstavlja to, da so ustrezno
osnovno barvo dodali polju z drazljajem namesto prilagodljivemu polju. Na napravah, ki prikazujejo
barve v sSRGB prostoru (siv trikotnik na sliki [l desno) pa to pomeni, da so taksnih barv z negativnimi
vrednostmi odziva ni mogoce prikazati.
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Slika 14: (a) Vpliv razmerja koeficientov r

(a)

22 na odboj od neskon¢no debele plasti R.

(b)
Vidimo,

da je odboj skoraj v celoti odvisen od razmerjas koeficientov, ne od njunih absolutnih vrednosti, kar

se lepo ujema z Kubelka-Munk analiti¢nim izrazom Rg.f M)

)

Odstopanje je nekoliko veCje za mocneje

absorbirajoce medije, kjer zatnejo Monte Carlo izracuni odstopati od Kubelka-Munk izraza. (b) Vpliv
sipalnega koeficienta o, in razmerja r na izgled krogle absorpcijsko-sipalnega materiala.
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Slika 15: Vpliv razmerja koeficientov r = £

razmerje r = 2*
s

Oa

razmerje r = 2*
s

na odboj od R od plast

zahtevamo nek robni pogoj. Za razliko od neskonéne plasti na sliki

o

razmerje r = 2*
s

igmenta, pod povrsino katerega
, je tu odboj R odvisen tudi od

absolutnih vrednosti, ne le od razmerja absorpcijskega in sipalnega koeficienta. Zlomljena je namrec
simetrija problema na skaliranje — s tem, da smo Ay = % pod povrsino medija vstavili ravnino z robnim
pogojem. Ce sta absolutni vrednosti koeficientov dovolj veliki (rumena), je ravnina z robnim pogojem
mnogo povprecnih prostih poti od vstopa v medij; tedaj robni pogoji ne vplivajo na Sirjenje svetlobe.
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Slika 16: Vpliv absorpcijskega koeficienta o, in razmerja r = 2= na izgled krogle, ¢e je pigment nanesen
na (a) ¢rno kroglo, (b) kroglo z zrcalnim odbojem. '

d=0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 00

Slika 17: Vpliv debeline sloja na izgled krogel, ¢e je ¢rni pigment z (0s,0,) = (0,50) nanesen na belo
kroglo z Lambertovim odbojem (zgornja vrstica) oz. beli pigment z (o5, 0,) = (10,0) nanesen na ¢rno
kroglo (spodnja vrstica).
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Slika 18: Vpliv debeline sloja na izgled krogel, e je ¢rni pigment z (os,0,) = (0,50) (zgornja vrstica)
oz. beli pigment z (o5, 0,) = (10,0) (spodnja vrstica) nanesen na kroglo z zrcalno povrsino.
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Slika 19: Odzivne funkcije CIE1931 barvnega prostora. (Levo zgoraj) Odzivne funkcije X,Y, Z, nepo-
sredno iz [4] podatkov. (Levo spodaj) Odzivne funkcije, izrazene v RGB prostoru preko preslikave (@)
Najbolj izrazito je, da so odzivi pri dolocenih valovnih dolzinah negativni. Taksne barve niso prikazljive
na sRGB zaslonih. (Desno) CIE1931 barvni prostor vseh vidnih barv, z normaliziranima z in y koordi-
natama, tako da je z = 1 —xz —y. Monokromatske (¢iste) barve so prikazane na polni ¢érni ¢rti z oznakami
valovnih dolzin. Na sRGB zaslonih so prikazljive le barve znotraj sivega trikotnika, kot konveksne kom-
binacije SRGB rdece, zelene in modre tocke. Barv izven tega trikotnika na tipi¢nem zaslonu ne moremo
prikazati.
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Slika 20: Odzivne funkcije X (), Y ()\) in Z()) za izbrano diskretizacijo (meje bin-ov) spektra na ny = 3
in ny = 32 spektralnih komponent. Desno zgoraj v manjsi sli¢ici vidimo tudi standardno osvetlitev D65,
s katero je potrebno odzivne funkcije pomnoziti (tega nismo omenili v razdelku §.1|, a je Se en pomemben
korak v tem, da odzivne funkcije podane v [4] lahko uporabimo).

nelinearnost cloveskega vida in gamma krivulje. poleg tristimulusne definicije barvnega prostora
moramo za natanéno reprodukcijo barve upostevati tudi nelinearnost ¢loveskega vida. odziv ¢loveskega
olesa na sevalnost ni linearen, temved ga priblizno opisuje potenéni zakon ieazy o [V/7, pri éemer je
v =~ 2.2. takSen odziv je iz tehni¢nih in zgodovinskih razlogov¥ vgrajen tudi v definicijo srgb barvnega
prostora. namesto shranjevanja [, so v vrednostih srgb pikslov shranjene vrednosti odzivov isdzv € [0, 1].
¢e zelimo ustrezno prikazati izra¢unane sevalnosti, jih moramo pred zapisom v sliko enkodirati kot
fodaiv o 11/7 in zapisati vrednost i.q,iv. le tako bo sevalnost, ki bo prikazana na rac¢unalniskem zaslonu,
dejansko o< [.

Stisk vrednosti (tonemapping). Omenili smo Ze nelinearno gamma krivuljo, s katero vrednosti
pikslov shranjujemo za pravilno reprodukcijo. A fizikalna sevalnost L, ki jo izra¢unamo z Monte Carlo
integracijo, je koli¢ina v intervalu [0,00). Za prikaz na rac¢unalniskem zaslonu pa so sRGB vrednosti
mozne le na intervalu [0, 1]. Potrebujemo torej preslikavo [0,00) — [0,1]. Najpreprosteje je vrednosti
preprosto porezati, a tako izgubimo informacije, ki smo jo trudoma izra¢unali. Alternativno bi vrednosti
lahko reskalirali glede na maksimalno vrednost v sliki. To je prav tako nesprejemljivo, saj s tem vecinski
del slike postane povsem preve¢ temen. Primerna in pogosta preslikava, ki jo bomo uporabili za slike,
izracunane v tej nalogi, bomo uporabili Reinhartov stisk

1+ L/B?

Li=1L
¢ L+1

, (Reinhartov stisk), (23)
pri cemer je B parameter s katerim nadziramo mo¢ tega stiska. Za B +— oo bodo preslikane vrednosti
zagotovljeno v [0, 1], za manjSe B pa bodo nekatere vrednosti Se vedno Lg; > 1, kar preprosto porezemo.
Parameter B izberemo glede na osvetlitev, v tej nalogi je stalno B = 3. Stisk in porez na [0, 1] sta
izvedena pred gamma preslikavo, saj gamma preslikava zahteva L € [0, 1].

4.2 Izmerjeni spektri pigmentov

Spektri so bili izbrani na podlagi meritev absorpcijskih in sipalnih koeficientov [[] za ultramarine moder,
viridian zelen ter okra rde¢ oz. rjav pigment. Meritve so bile iz slik v ¢lanku ekstrahirane z uporabo
Engauge programa. Ker smo jih zeleli uporabiti v kombinaciji z odzivnimi funkcijami LY so bile meritve
7z uporabo zlepka reinterpolirane na interval [360 nm, 830 nm|, po razmakih 1nm. Interpolacija ob robih
intervala predstavlja bolj ali manj ugibanje, a na kon¢ni rezultat to ne vpliva, saj so odzivne funkcije za
A < 380nm in A > 700 nm zelo majhne.

Na podlagi absorpcijskega in sipalnega spektra o, () in gs(A) lahko pora¢unamo odbojni spekter od
neskonéno debele ravnine pigmenta R (\). Na slikah Ej, in E primerjavo z Monte Carlo izracunom

Stehnicéni razlog je, da je tako natanénost diskretizacije intervala [0, 1] na 8 bitov bolje izkoriséena. zgodovinski razlog je
v tem, da so crt monitorji na katodne cevi imeli napetostni odziv, ki je bil posreceno (skoraj) inverz omenjenega potencnega

zakona, t. j. fcrt U;Yrt’ s potenca posreceno blizu tiste za odziv cloveskega ocesa, Ycry & 2.5.

16


https://akhuettel.github.io/engauge-digitizer/

Pigment ultramarine Kubelka-Munk Odboj R
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Slika 21: Absorpcijsko-sipalni spekter ultramarine pigmenta iz [H] in izracunan odbojni spekter za ne-
skon¢no debelo plast taksnega pigmenta R.,. (Levo) Izmerjen spekter in interpolanta. Spekter je reska-
liran tako, da je [os(\)dA\ = 1, a razmerje med o, in oy je ohranjeno. (Desno) Odboj od neskonéno
debele plasti pigmenta R,. Z zeleno je narisan Monte Carlo izra¢un, ki se precej lepo ujema z analiti¢no
Kubelka-Munk napovedjo. (Med grafoma) Rekonstrukcija barve iz spektrov odboja Roo(A). (Skrajno
desno) Dejanski primer ultramarine pigmenta (vir slike: Wikipedia).

Pigment viridian Kubelka-Munk Odboj R
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Slika 22: Absorpcijsko-sipalni spekter viridian pigmenta iz [H} in odbojni spekter za neskoncéno debelo
plast takSnega pigmenta R.,. (Levo) Izmerjen in interpolanta. (Desno) Odboj od neskonéno debele
plasti pigmenta R.,, Monte Carlo izracun z zeleno se lepo ujema z analiti¢no Kubelka-Munk napovedjo.
(Skrajno desno) Dejanski primer sinteti¢nega viridian pigmenta (vir slike: Wikipedia).

spektra RQXI C)()\) poracunamo tudi Kubelka-Munk analiti¢ni priblizek po izrazu (@) Vidimo, da sta
obliki spektrov zelo podobni, kar je pricakovano, saj Kubelka-Munk priblizek primeru neskoncéne ravnine
dobro deluje. Odstopanje je bolj opazno za moc¢no_absorbirajoce dele spektra, kjer je 7 > 1, kar se
ujema z Ze opazenim obnaSanjem modela na sliki [l14. Na podlagi izra¢unanega odboja R, (A) lahko
doloc¢imo, kaksne barve je taksna neskoné¢na plast pigmenta. V ta namen poracunan spekter pomnozimo
in integriramo z ustreznimi odzivnimi funkcijami, kot smo jih definirali v razdelku @)

4.3 'Vpliv debeline pigmenta na izgled in barvo

Kot smo poracunali za odboj od neskon¢no debele plasti, lahko poracunamo tudi za koncéno debele
plasti. Na slikah P4, in R§ izra¢unamo izgled krogle z 100 vzorci na piksel in diskretizacijo spektrov
na 32 komponent (kot na sliki desno). Ker je kon¢ni prikaz RGB, je stevilo spektralnih kanalov
precej irelevantno, le da je ny > 3. Dodatni kanali so v vecini le izpovpreceni po integraciji z odzivnimi
funkcijami.

Poleg barv in izgleda si pogledamo tudi dejanske odbojne spektre za koncéno debelo planarno plast
pigmenta na beli in na ¢érni povrsini (slike 3, E in @ Vidimo, da oblika spektra gladko preide v belo
oz. ¢rno barvo glede na debelino sloja pigmenta.

17


https://commons.wikimedia.org/wiki/File:Natural_ultramarine_pigment.jpg
https://commons.wikimedia.org/wiki/File:Viridian(Pigment_Green_18)_(Left)_And_Phthalocyanine_Green(Pigment_Green_7)_(Right)_Gouache.jpg
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Slika 23: Absorpcijsko-sipalni spekter ochre pigmenta iz [H] in odbojni spekter za neskoncéno debelo
plast takSnega pigmenta R... (Levo) Izmerjen in interpolanta. (Desno) Odboj od neskonéno debele
plasti pigmenta R.,, Monte Carlo izracun z zeleno se lepo ujema z analiticno Kubelka-Munk napovedjo.
(Skrajno desno) Dejanski primer viridian pigmenta (vir slike: Wikipedia).
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Slika 24: Krogle, obdane z plastjo absorbirajo-sipalnega ultramarine pigmenta, z absorpcijsko-sipalnim
spektrom iz slike R1. Plast je nanesena na kroglo z Lambertovim odbojem (zgornja vrstica), na ¢rno
kroglo (sredinska vrstica) in na kroglo z zrcalnim odbojem (spodnja vrstica).

Na beli (Lambert) Na ¢rni
1 5 d=0 == d = 0.064 ——d = 0.6 1.5 ] —d =0 —— d = 0.064 - d = 0.6
d = 0.001 ——d = 0.1 ——d = 0.8 3 —_—d = 0.001 ——d = 0.1 —— d = 0.8
—~ 4 d = 0.004 ——d = 0.2 ——d =1 —~ —t— d = 0.004 ——d = 0.2 ——d =1
/< ] —— = 0.016 ——d=0.4 —— d = 100 /< 3 —— d = 0.016 —d =0.4 == d = 100

400 500 600 700 800 400 500 600 700 800
valovna dolzina A [nm] valovna dolzina A [nm)]

Slika 25: Spreminjanje odbojnega spektra R(\), ko spreminjamo debelino nanosa ultramarine pigmenta
na beli (Lambertov odboj) in na ¢rni povrsini.
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Slika 26: Krogle, obdane z plastjo absorpcijsko-sipalnega viridian pigmenta, z absorbcijsko-sipalnim
spektrom iz slike P2. Plast je nanesena na kroglo z Lambertovim odbojem (zgornja vrstica), na ¢rno
kroglo (sredinska vrstica) in na kroglo z zrcalnim odbojem (spodnja vrstica).

Na beli (Lambert) Na érni

d=0 —— d = 0.064 == d=0.6 ——d=0 —e— d = 0.064 == d=0.6
d = 0.001 -+ d = 0.1 . —— d = 0.001 —— d =0.1 - d =0.8
d = 0.004 = d=0.2 A ——— d = 0.004 - d=0.2 ———d=1

d=0.016 =e=d=0.4 /1o —e— d =0.016 === d=0.4 —e— d = 100
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Slika 27: Spreminjanje odbojnega spektra R()), ko spreminjamo debelino nanosa viridian pigmenta na
beli (Lambertov odboj) in na ¢rni povrsini.
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Slika 28: Krogle, obdane z plastjo absorpcijsko-sipalnega ochre pigmenta, z absorbcijsko-sipalnim spek-
trom iz slike P3. Plast je nanesena na kroglo z Lambertovim odbojem (zgornja vrstica), na ¢érno kroglo
(sredinska vrstica) in na kroglo z zrcalnim odbojem (spodnja vrstica).

Na beli (Lambert) Na érni
15 ] d=0 o= d =0.064 == d=0.6 : ——d =0 == d =0.064 == d=0.6
3 d =0.001 == d=0.1 —e— d =08 —e— d =0.001 == d=0.1 —— d=0.8
—_ ] d=0.004 == d=02 —d=1 ———d=0.004 == d=0.2 —d=1
~< ] d=0.016 == d=04 ——d=0.016 = d=04 —— d =100
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Slika 29: Spreminjanje odbojnega spektra R(A), ko spreminjamo debelino nanosa ochre pigmenta na beli
(Lambertov odboj) in na érni povrsini.
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Zakljucek

V nalogi smo simulirali transport svetlobe z Monte Carlo integracijo, s sledenjem potem. Zadovoljen
sem, da mi je uspelo z lastno kodo realisti¢no (lastno subjektivno mnenje) simulirati izglede nanosov
pigmenta na razline materiale (robne pogoje). Znaten tehnicen iziv je predstavljala sama hitrost take
integracije, kar sem razresil z ve¢-pomembnostnim vzorcenjem, z vecnitnim izvajanjem programa in z
uporabo jezika kot je C.
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