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Uvod
V nalogi se bomo zanimali za transport svetlove skozi volumetrične objekte, ki svetlobo absorbirajo in
sipajo, npr. skozi sloje polprosojnih pigmentov, nanesenih na površino neprosojnega objekta. Čeprav
je svetloba valovanje in je njen opis podan z valovno enačbo, bo za naše potrebe zadosten približek
geometrijske optike, ki ga lahko gledamo kot limito nizkih valovnih dolžin, kjer zanemarimo uklon in
interferenco. Takšna limita je formalizirano preko ikonalne enačbe, ki jo lahko izpeljemo iz Maxwellovih
enačb [1, stran 117], ko gre λ → 0. Uporabo takšne limite lahko v upravičimo s tem, da bo valovna
dolžina majhna v primerjavi z karakterističnimi razdaljami, na katerih se spreminjajo lastnosti snovi.

V nadaljevanju bomo v limiti geometrijske optike transport svetlobe prevedli na opis z žarki, nato pa
tega prevedli na obliko visokodimenzionalnega integrala, primernega za izračun z Monte-Carlo integracijo
na računalniku. Dodatno, svetloba, ki jo izseva klasična ali LED žarnica, vsebuje mnogo valovnih dolžin.
V začetku naša diskusija predpostavila, da imamo opravka z monokromatsko svetlobo. To bomo brez
posebnih težav v razdelku 3.3 posplošili na primer, kjer svetloba vsebuje več valovnih dolžin. Zanimala
nas bo tudi barva in vizualni izgled takšnih pigmentov oz. objektov, na katere so naneseni. Tu bomo
morali povedati nekaj osnov o tem, kako je koncept barve kvantitativno de}niran. Čeprav je prehod
konceptualno preprost, je pravilen prikaz vseeno nekoliko težaven, saj je človeški vid nelinearen, poleg
tega pa računalniški monitor prikazuje RGB trojice v obsegu [0, 1], z omejenim dinamičnim razponom
prikaza.

1 Transport svetlobe vzdolž žarkov
Osnovni koncept geometrijske optike so žarki, t. j. krivulje pravokotne na valovne fronte, lokalno vzpore-
dne z valovnim vektorjem1. Vzdolž žarkov teče energijski tok svetlobe. Predpostavimo, da imajo mediji,
po katerih bomo propagirali svetlobo, homogene lomne količnike. Tedaj so žarki, ki jih obravnavamo, od-
sekoma ravni; smer spremenijo le na stikih medijev z različnimi lomnimi količniki, po Snellovem lomnem
zakonu.

Če v mediju ne bi imeli absorpcije ali sipanja, bi se energija vzdolž ravnih žarkov ohranjala. De}nirati
moramo primerne radiometrične }zikalne količine, s katerimi opisujemo širjenje svetlobe vzdolž žarkov.
Žarkov je namreč v prostoru neštevno mnogo, in če bi vsakemu pripisali neko končno moč, bi bila skupna
moč, ki vpada na neko površino, neskončna. Predstavljajmo si, da imamo sferično svetilo, ki oddaja moč
Φ [W]. Ta moč oz. sevalni tok (ang. radiant ~ux) izvira iz površine svetila, torej je naravno de}nirati
izsevanost (ang. radiant exitance) na površino kot

M =
∂Φ

∂A
, izsevanost [Wm−2],

podobno lahko tok na enote površine pripišemo površinam, ki so osvetljene, kar poimenujemo obsevanost
(ang. irradiance)

E =
∂Φ

∂Ã
, obsevanost [Wm−2].

Da se izognemo težavam v razumevanju, je potrebno razločiti med površinama ∂A osvetljene površine
in ∂As svetila. V tej distinkciji se ponuja povsem geometrijsko razumevanje tega, zakaj je obsevanost

1V tej nalogi se izognemo diskusiji dvolomnih medijev, kjer Poyntingov vektor ni nujno vzporeden z valovnim vektorjem.
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Slika 1

površine odvisna od kota, pod katerim jo osvetljujemo. Recimo, da je površina ∂A na skici 1a osvetljena
s kolimirano svetlobo ali točkastim svetilom, tako da svetloba na površino v tej točki vpada le pod enim
kotom. Tedaj je svetlobni tok, izsevan iz površine svetila ∂As, porazdeljen na večjo površino ∂A = ∂As

cos θ in
obsevanost je sorazmerna izsevanosti svetila z faktorjem cos(θ). Največja je, ko je osvetlitev pravokotna,
t. j. vzporedna z normalo. Takšno razumevanje, kjer svetloba vpada le pod enim kotom θ je potrebno
posplošiti na primer, ko vpadna svetloba izvira iz razsežnega svetila2 in ni kolimirana. V takem splošnem
primeru svetloba na osvetljeno površino vpada pod mnogimi različnimi koti, z žarkom za vsakega izmed
kotov θ ∈

[
−π

2 ,
π
2

]
. Da opišemo skupek žarkov, ki osvetljujejo površino pod različnimi koti, de}niramo

novo količino, sevalnost (ang. radiance)

L(x, ω) = ∂2Φ

∂ω∂A⊥ , sevalnost [Wm−2 sr−1], (1)

ki pripada posameznim smerem ω = (θ, ϕ), iz katerih je površina osvetljena. De}nirana je kot diferen-
cialna količina, ki pripiše gostoto sevalnega toka ∂Φ

∂A⊥ [Wm−2] majhnemu stožčastemu skupku žarkov, ki
oblikujejo stožec sferičnega kota ∂ω3 okoli osrednje smeri ω. Energijski tok poteka torej vzdolž žarka, v
smeri ω in je enak ∂Φ

∂A⊥ = L(x, ω) · ∂A⊥ za neko testno površino ∂A⊥, pravokotno na smer žarka (glej
skico 1b).

Primer 1. Za kolimiran vir svetlobe (npr. z lečo kolimirano točkovno svetilo), so vsi žarki vzporedni in
usmerjeni v eno smer, imenujmo jo smer ωkol. Tedaj je sevalnost oblike L(x, ω) = ∂Φ

∂A⊥ · δ(ω−ωkol), tako
da je gostota takšnega usmerjenega sevalnega toka enaka ∂Φ

∂A⊥ =
∫
4π

L(x, ω) dω. Gostota ∂Φ
∂A⊥ [Wm−2]

kljub enotam ni obsevanost ali izsevanost, temveč je nekaj drugega – je lastnost kolimiranega snopa
žarkov.

Osnovne relacije med L,M in E. Pomembno je, da razumemo osnovno razliko med sevalnostjo L,
ki je lastnost žarkov, in količinama M,E. Izsevanost M in obsevanost E sta količini, ki sta smiselno
de}nirani zgolj na površinah, ne pa tudi v praznem prostoru ali drugem mediju. Če površino osvetljujejo
žarki z sevalnostmi L(x, ω), bo obsevanost površine z žarki iz smeri ω = (θ, ϕ) enako

dE(x, ω) = ∂2Φ

∂A
= L(x, ω) cos(θ)∂ω, cos(θ) = |ω · n|, (2)

Celotna obsevanost je integral po vseh smereh možne osvetlitve, tipično po hemisferi

E(x) =
∫

2π

dE(x, ω). (3)

Povsem analogno je de}nirana izsevanost, le za površino na svetilu ∂As in normalo nsvetila (glej skico 1b).
V diferencialni obliki je izsevanost v smer ω = (θs, ϕ) enaka

dM(x, ω) = ∂2Φ

∂As

= L(x, ω) cos(θs)∂ω, cos(θs) = |ω · nsvetila|.

2V nasprotju z točkastim svetilom, kjer ima svetloba le eno smer (proti svetilu) za vsako točko na osvetljeni površini.
3Sferični kot merimo v steradianih [sr] kot površino, zaobjeto na enotski krogli. Nekolikšna zloraba notacije je v tem,

da z ω označimo smer, podano v sferičnih koordinatah s kotoma (θ, ϕ), hkrati pa z ∂ω označujemo kot okoli te smeri.
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Slika 2: Poteki Monte Carlo integracije sevalnosti po številu vzorcev. (Zgoraj levo) 50 ločenih integracij in
njihovo povprečje (temno modro). (Zgoraj desno) Narisano je odstopanje posameznih potekov integracije
od najbolj točne izračunane vrednosti. Standardni odklon σ̂ ansambla 50 integracij (vijolično) pada z
1√
N

, kot pričakujemo za Monte Carlo metodo. Oceno napake izračunanega povprečja (najtemnejše
modro) lahko precej dobro zadanemo z izračunom standardne napake SE = σ̂√

50
(manj temno modro).

(Spodaj) Slike krogle absorpcijsko-sipalnega medija za različno število vzorcev.

To lahko integriramo po prostorskem kotu in dobimo izsevanost iz točko na svetilu x kot

M(x) =
∫

2π

dM(x, ω). (4)

Primer 2. Predstavljajmo si neskončno ravnino, ki seva kot idealno črno telo. Sevalnost v bližini
takšnega svetila je neničelna v zgornji hemisferi in je izotropna, neodvisna od kota ω. Izsevanost na
površini ravnine podana z integralom 4, ki se zaradi izotropnosti radiance in translacijske simetrije
neskončne ravnine L(x, ω) = L, poenostavi kot

M(x) =
∫

2π

dM(x, ω) = L

∫

2π

cos(θs)∂ω = πL.

Radianca je torej preproste oblike

L(x, ω) = M ·
{

1
π

ω v zgornji hemisferi
0 ω v spodnji hemisferi

}
, M =

∂Φ

∂A
.

Sevanje takega svetila upošteva Lambertov kosinusni zakon [1, str. 195], po katerem je jakost sevanja,
izsevana v prostor pod kotom θ glede na normalo, sorazmerna s kosinusom kota z normalo cos θ. Jakost
sevanja je moč na prostorski kot, diferencialno de}nirana kot dI(x, ω) = ∂2Φ

∂ω
= L cos(θs)∂As. V zgornji

hemisferi, kjer je L konstanten, tedaj velja Lambertov kosinusni zakon

I(ω) = dI(x, ω) =
∫

As

dI(x, ω) = L

∫

As

cos(θs)∂As = LAs cos(θs), Lambertov kosinusni zakon.
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σ̂ ansambla

stand. napaka SE

Ocena sevalnosti L̂
(

x = (0, 1, 0), ω = (0,−1, 0)
)

z MIS

N = 1 N = 4 N = 16 N = 64 N = 256 N = 1024

Slika 3: Poteki Monte Carlo integracije z dodatkom več-pomembnostnega vzorčenja (multiple importance
sampling oz. MIS) sevalnosti po številu vzorcev. Slika je namenjena primerjavi z sliko 2, v primerjavi
s katero je konvergenca mnogo hitrejša. Sam trend ostaja 1√

N
, a konstanta variance je mnogo manjša.

Oblike krogel absorbcijsko-sipalnega medija (spodaj) so prepoznavne že z nekaj vzorcih, mnogo bolje kot
pri 1000 in več vzorcih brez uporabe več-pomembnostnega vzorčenja.

Sevalnost (ang. radiance) je torej osnovna količina, ki opisuje usmerjen tok svetlobe vzdolž žarkov.
Parametrizirana je glede na posamezne žarke, torej jo lahko razumemo kot funkcijo na prostoru vseh
žarkov (x, ω) 7→ L(x, ω). V mediju brez absorpcije in sipanja se sevalnost vzdolž žarkov ohranja4, kar
formalizira izrek o sevalnosti [9, pogl. 5.5]. Transport svetlobe smo prevedli na opis z žarki, ki ga bomo
v nadaljevanju razširili, da bo vključeval sipanje in absorpcijo.

1.1 Absorpcijsko-sipalni model
V opisu transporta svetlobe z žarki smo zaenkrat izvzeli absorpcijo in sipanje svetlobe na gradnikih, ki
sestavljajo medij. Vpliv absorpcije na transport svetlobe vzdolž žarka opisuje preprosta diferencialna
enačba

(ω · ∇)L(x, ω) = −σa(x)L(x, ω), absorpcija, (5)

pri čemer je σt(x) [m−1] absorpcijski koe}cient medija. Po drugi strani je učinek sipanja dvostranski.
Svetloba se na gradnikih medija iz žarka sipa navzven; t. i. od-sipanja (ang. out-scattering) sevalnost
zmanjšuje na enak način kot absorpcija

(ω · ∇)L(x, ω) = −σs(x)L(x, ω), od-sipanje, (6)

le da koe}cient absorpcije nadomestimo z koe}cientom sipanja σs(x). Poleg od-sipanja se svetloba na
gradnikih sipa iz drugih smeri ω′ 6= ω. Do-sipanje žarku dovaja sevalnost, ko svetloba potuje vzdolž
njega (ω · ∇)L(x, ω) = S(x, ω), pri čemer je do-sipalni integral S(x, ω) de}niran kot

S(x, ω) = σs(x)
∫

4π

ϕ(x, ω, ω′)L(x, ω′) dω′, (7)

4Zares se ohranja količina L̃ = L/n2, tako imenovana osnovna sevalnost (basic radiance). A v naši nalogi vseskozi
predpostavljamo, da je lomni količnik n posameznih medijev homogen, torej se zares ohranja L. Za dokaz ohranitvenega
zakona v posplošeni obliki glej [8, str. 116].

4



opazovalec

svetilo

ϕ

(a)

0 π

2
π 3π

2
2π

kot φ

0

2

4

6

8

10

12

14

16

18

se
va
ln
os
t
L̂
σ
s
(φ
)

π

2
π 3π

2

0

500

1000
σs = 0

σs = 1

σs = 2

σs = 4

σs = 8

σs = 16

σs = 32

σs = 100

σs = 1000

σs = 10000

Lambert

100 104σs

100
101
102

Pointegrirane
intenzitete

e(σs) =
∫2π
0 L̂σs (φ) dφ

e(σs) =
∫2π
0 L̂Lambert(φ) dφ

Po kotu φ med svetilom in opazovalcem, polna krogla belega pigmenta

(b)

Slika 4: (a) Postavitev svetila in opazovalca, ki meri sevalnost. (b) Kotna odvisnost sevalnosti po
kotu ϕ med kroglastim svetilom in opazovalcem. Svetilo je kroglasto z radijem 1 in postavljeno pri
(10, 0, 0), opazovalec pa kot na sliki (a), na polovici te oddaljenosti od izhodišča. Pri zadostno majhnih
sipalnih presekih σs je svetilo vidno skozi kroglo, to vidimo v ostrem škatlastem vrhu pri kotu ϕπ, kjer
je sevalnost enaka tisti na površini svetila (t. j. L0 = 1000). Pri večjih sipalnih koe}cientih se sevalnost
iz tega centralnega vrha prerazporedi v druge smeri, tako da vedno bolj preferira izstop blizu točke, kjer
je v telo vstopil. Dobimo značilno obliko, kjer je telo na ”skozi” (ϕ = π) vedno manj prosojno, odboj
(okoli ϕ = 0) pa se vedno bolj približuje obliki ∝ cosϕ, značilni z Lambertovo površino (razmerje med
L10000 in LLambert je narisano v rdečih trikotnikih).

torej sešteje prispevke vsem smeri ω′, iz katerih se svetloba do-sipa v naš žarek (x, ω). Ko svetloba
potuje vzdolž žarka, parametriziranega kot x′ = x + ωt (pri čemer je t žarkovni parameter oz. pot
vzdolž žarka), se torej absorbira in sipa. Celotni opis teh dveh procesov opisuje tako imenovana enačba
sevalnega transporta [2] (ang. radiative transfer equation), ki združuje absorpcijo in sipanje

(ω · ∇)L(x, ω) = −σa(x)L(x, ω)− σs(x)L(x, ω)︸ ︷︷ ︸
absorpcija in od-sipanje,

skupni σt = σa + σs

+σs(x)

∫

4π

ϕ(ω, ω′)Li(x, ω′) dω
︸ ︷︷ ︸

do-sipanje S(x,ω)

+ ϵ(x, ω)︸ ︷︷ ︸
emisija

, (8)

prvi člen enačbe je atenuacija svetlobe z skupnim koe}cientom σt = σa+σs, drugi pa predstavlja pozitivni
prispevek do-sipanja. Dodali smo tudi člen ϵ(x, ω), ki predstavlja emisijo v snovi; tega člena v tej nalogi
ne bomo upoštevali, je pa njegova obravnava relativno preprosta.

φ = 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

100◦ 110◦ 120◦ 130◦ 140◦ 150◦ 160◦ 170◦ 180◦

Slika 5: Odvisnost izgleda od kota osvetlitve, postavitev kot na sliki 4a. Krogla absorpcijsko-sipalnega
medija (σs, σa) = (16, 0).

5



1.2 Integralska formulacija transporta
Diferencialno enačbo sevalnega transporta (8) želimo rešiti numerično, z uporabo računalnika. To bomo
dosegli z Monte Carlo integracijo, točneje z algoritmom sledenja potem (ang. path tracing). Monte
Carlo integracija je v osnovi tehnika za vrednotenje visoko dimenzijskih integralov, zato je potrebno
diferencialno enačbo prvo prevesti na integral. Takšna integralska formulacija transporta svetlobe je
bila prvo formuliran za trdne površine (ne presevne medije, ki zanimajo nas) sicer z slavno enačbo
upodabljanja (ang. rendering equation) [5]. Sledenje potem in njegove različice predstavljajo jedro vseh
tehnik za }zikalno osnovano upodabljanje in se široko uporabljajo pri produkciji }lmov, iger in ostalih
medijev.

V tej nalogi se osredotočamo na presevne medije. Tu bomo reševali drugo integralno enačbo, ki jo
lahko izpeljemo z integracijo enačbe sevalnega transporta (8). Tako imenovana volumetrična enačba
upodabljanja (ang. volumetric rendering equation) izraža sevalnost v neki točki kot integral absorpcije
in sipanja vzdolž žarka

L(x, ω) =
∫ tizstop

0

T (x, x′)
[
S(x′, ω) + ϵ(x′)

]
dt+ T (x, xizstop)L(xizstop, ω), (9)

pri čemer je tizstop žarkovni parameter, pri katerem iz medija izstopimo v vakuum, faktor T (x, xizstop)
pa je atenuacija po poti med x in xizstop = x + ωtizstop, de}nirana kot

T (x, x′) = T (0, t) =

∫ t

0

σt(t
′) dt′, (10)

pri čemer je σt(x) = σa(x) + σs(x) skupni atenuacijski koe}cient absorpcije in od-sipanja.

2 Monte Carlo integracija
Integralska enačba (9) je rešljiva z uporabo Monte Carlo integracije. Če ponovimo – za splošen integral
oblike

I =

∫
f(x) dx,

lahko skonstruiramo Monte Carlo oceno s tem, da vzorčimo in računamo primerno povprečje integranda,
za vzorce iz neke porazdelitve x ∼ PDF(x)

〈I〉 = 1

N

∑

i

f(xi)

PDF(xi)
=

1

N

∑

i

g(xi), xi ∼ PDF(x), (11)

kjer je g Monte Carlo cenilka za integral I, tako da njena pričakovana vrednost 〈I〉 = 1
N

∑
i g(xi)

konvergira proti I. Napaka takšne integracije se zmanjšuje s številom vzorcev N kot 1/
√
N , vendar

konstanta
√

Var(g) močno zavisi od izbire porazdelitve vzorčenja, kot bomo videli pri uvajanju več-
pomembnostnega vzorčenja (razdelek 2.4).

Žarki iz kamere ali žarki iz svetila. Čeprav je morda }lozofsko bolj pravilno razumeti, da svetloba
izvira iz svetila, nam enačba 9 ne predpisuje, v kateri smeri moramo žarkom slediti – podaja le rekurzivno
zvezo, s katero se sevalnost vzdolž takih žarkov propagira. Formalno je enako, če integral 9 začnemo
vrednotiti iz smeri svetila ali iz smeri opazovalca, le vzorčiti moramo po prostoru možnih poti med njima.
Ker velik del žarkov iz svetila (kako velik je odvisno od geometrije) nikoli ne doseže opazovalca, je bolj
ugodno, da žarkom sledimo iz smeri, kjer sevalnost opazujemo. Takšno vzorčenje je še vedno zagotovljeno
nepristransko, a tipično konvergira mnogo hitreje kot če bi žarki pot začeli na površini svetil.

2.1 Konstrukcija cenilke
Direktno iz volumetrične enačbe upodabljanja (9) lahko zapišemo osnovno obliko cenilke. Če ocenjujemo
sevalnost v točki x v smeri ω, bomo vzorčili žarkovni parameter t ∼ PDF(t) vzdolž žarka x′ = x + ωt in
integrand ocenili kot

g
(poznan S(x′,ω) in L(xizstop,ω))
L =

T (0, t)

PDF(t) · S(x
′, ω) + T (0, tizstop) · L(xizstop, ω). (12)
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Slika 6: Kotna odvisnost sevalnosti za kroglo, znotraj katere je postavljena manjša krogla z radijem
0.9, ki pod slojem belega pigmenta vsiljuje nek robni pogoj. (Levo) Robni pogoj črne površine, kjer je
notranja krogla idealni absorber, torej je sevalnost na meji z notranjo kroglo L = 0. Za majhne sipalne
koe}ciente je

φ = 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

100◦ 110◦ 120◦ 130◦ 140◦ 150◦ 160◦ 170◦ 180◦

Slika 7: Odvisnost izgleda od kota osvetlitve, postavitev kot na sliki 4a. Na črni krogli je nanos
absorpcijsko-sipalnega medija (σs, σa) = (8, 0).

φ = 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

100◦ 110◦ 120◦ 130◦ 140◦ 150◦ 160◦ 170◦ 180◦

Slika 8: Odvisnost izgleda od kota osvetlitve, postavitev kot na sliki 4a. Na zrcalni krogli je nanos
absorpcijsko-sipalnega medija (σs, σa) = (8, 0).
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Cenilke (12) ne moremo izvrednotiti, saj ne poznamo točne vrednosti do-sipalnega integrala S(x, ω).
Podoben problem imamo s tem, da ne poznamo sevalnosti L(xizstop, ω). Zato zapišemo Monte Carlo
cenilko za do-sipalni integral, sicer kot

g
(poznan L(x′,ω))
S =

σs(x′)ϕ(x′, ω, ω′)

PDF(ω′)
· L(x′, ω′). (13)

kar lahko razumemo kot vzročenje integrala po sferi (7) s tem, da vzorčimo smeri dohodnih žarkov
ω′ ∼ PDF(ω′). Prav tako, kot pri prvo zapisani cenilki (12) nismo poznali S, tokrat ne poznamo
L(x′, ω). To razrešimo z rekurzijo, tako da cenilki gS in gL združimo v eno rekurzivno cenilko

gL =
T (0, t)

PDF(t) · gS(x
′, ω) + T (0, tizstop) · gL(xizstop, ω), gS =

σs(x′)ϕ(x′, ω, ω′)

PDF(ω′)
· gL(x′, ω′), (14)

pri čemer je rekurzivnost v tem, da smo L(xizstop, ω) iz cenilke (12) ocenili na enak način kot začetni
L(x, ω), le z x′ 7→ xizstop. Prav tako gS spet vsebuje cenilko gL, le z ω 7→ ω′.

2.2 Vzorčenje medija
Takšna rekurzivna cenilka (14) je pripravna za implementacijo na računalniku. Zavoljo učinkovitosti
jo je relativno preprosto prevesti na iteracijo, kjer akumuliramo faktor prepustnosti in se izognemo
dejanski rekurziji. Vse kar je potrebno razrešiti, je učinkovito žrebanje vzorcev iz želenih porazdelitev.
V homogenem mediju, ki ga bomo obravnavali večino te naloge, je inverzom CDF funkcije preprosto
vzorčiti žarkovne parametre t iz porazdelitve

PDF(t) = σt · e−σtt, homogen medij. (15)

Pomaga nam dejstvo, da je ta porazdelitev sorazmerna s prepustnostjo T (x, xizstop) = e−σtt, kar je
povsem naravno pomembnostno vzorčenje; zagotovi, da je cenilka bolj konstantna in zmanjša varianco.
Pri vzorčenju iz porazdelitve (15) se cenilka še dodatno poenostavi kot

gL =

{
1

σt(x′) · gS(x′, ω) t < tizstop, žarek sipan
T (0, tizstop) · gL(xizstop, ω) žarek pobegne iz medija

. (16)

Poleg žarkovnih parametrov t potrebujemo vzorčiti še smeri ω′ za vrednotenje cenilke do-sipalnega in-
tegrala S(x, ω). Če je medij izotropen, je fazna funkcija ϕ(ω) = 1

4π zopet lahko z metodo inverza CDF
vzorčimo naključne smeri na sferi ω′ ∼ 1

4π .

2.3 Implementacija
Algoritem sledenja potem sem implementiral v C programskem jeziku. Zanimiv tehničen problem je
predstavljalo učinkovito generiranje naključnih števil. Funkcija rand(), ki je dostopna na UNIX sistemih,
ima namreč neko deljeno stanje, ki znatno upočasni program, izvajan v več nitih (glej sliko 9). Kot rešitev
tega sem uporabil generator PCG32, opisan v [10], z _Thread_local stanjem generatorja.

2.4 Več-pomembnostno vzorčenje
Kot vidimo na sliki 2 spodaj, je konvergenca za sliko absorpcijsko-sipalnega medija zelo počasna, kon-
stanta

√
Var(g) je tako velika, da potrebujemo vsaj N = 1000 oz. več vzorcev na piksel (in na posamezen

spektralni kanal) da sploh vidimo prepoznavno obliko krogle. Problem je v tem, da je naše svetilo rela-
tivno majhno (r = 1/10, na oddaljenosti R = 10) in da ga velika večina žarkov ne doseže. Ta problem
bomo razrešili z uporabo več-pomembnostnega vzorčenja (ang. multiple-importance sampling oz. MIS),
ki ga je za sledenje potem prvi izrazil Veach v svoji doktorski disertaciji [12].

Osnovna ideja pomembnostnega vzorčenja je slednja. Namesto, da žarke vzorčimo izotropno v vse
smeri po ω′ ∼ PDFfazna(ω

′), kot to narekuje naša izotropna fazna funkcija ϕ(x, ω, ω′) = 1
4π

5, bomo poleg
tega vzorčili še iz ene porazdelitve PDFsvetil, ki predstavlja sevalnost vseh svetil v izbrani geometriji. Na
vsakem koraku vrednotenja cenilke gS torej vzorčimo dve smeri žarka

ω′
ℓ ∼ PDFsvetil(ω

′), ω′
Φ ∼ PDFfazna(ω

′),

5Fazna funkcija ϕ(x, ω, ω′) je zavoljo ohranitve energije v sipalnih procesih normirana kot
∫
4π

ϕ(x, ω, ω′) dω′, torej že
predstavlja verjetnostno porazdelitev za vzorčenje, najbolj primerna za PDFfazna(ω

′) = ϕ(x, ω, ω′).
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Slika 9: Hitrost izvajanja z večanjem števila niti. PCG generator ne kaže iste upočasnitve kot UNIX
rand(). Z zeleno je narisan način deljenja dela, kjer piksle med niti razdelimo deterministično po
enem linearnem indeksu. Z vijolično piksle pred tem premešamo, da zagotovimo ”pošteno” in tako bolj
učinkovito delitev dela.

nato pa oba vzorca združimo v novo izboljšano več-pomembnostno (MIS) cenilko

gMIS
S = wMIS

ℓ (ω′
ℓ) ·

Φ(x′, ω, ω′
ℓ)

PDFsvetil(ω′
ℓ)

· L(x′, ω′
ℓ) + wMIS

Φ (ω′
Φ) ·

Φ(x′, ω, ω′
Φ)

PDFfazna(ω′
Φ)

· L(x′, ω′
Φ), (17)

pri čemer sta wMIS
ℓ in wMIS

Φ primerne uteži, t. i. balance heuristic [12], de}nirane kot

wMIS
ℓ (ω) =

PDFsvetil(ω)

PDFsvetil(ω) + PDFfazna(ω)
, (18)

wMIS
Φ (ω) =

PDFfazna(ω)

PDFfazna(ω) + PDFsvetil(ω)
. (19)

Iz de}nicije uteži 19 vidimo, da je prispevek vzorca iz vsake izmed porazdelitev obtežen z relativno
verjetnostjo, da je bil ta vzorec izžreban. Ko je vzorčena smer pomembna za prispevek v smeri svetil, je
torej večji prispevek prvega člena, če pa v izbrano smer ni svetil, je prispevek prvega člena enak 0.

Implementacija več-pomembnostnega vzročenja znatno pohitri konvergenco. Sam trend upadanja
variance je še vedno 1√

N
, a konstantni faktor je mnogo manjši, kot vidimo s primerjavo integracije z in

brez uporabe več-pomembnostnega vzorčenja (MIS) na slikah 3 z in 2.

3 Izgled in zanimive funkcijske odvisnosti
3.1 Kotna odvisnost sevalnosti
V preprosti geometriji si bomo pogledali, kako absorpcijsko-sipalni medij vpliva na kotno odvisnost
prepuščene in odbite svetlobe. V izhodišče postavimo enotsko kroglo belega pigmenta, t. j. materiala, ki
svetlobo le sipa brez absorpcijske. Nato pod kotom ϕ, kot je to prikazano na sliki 4a, kroglo osvetlimo z
majhnim kroglastim svetilom. Izračunana kotna odvisnosti sevalnosti za polno kroglo belega pigmenta je
narisana na sliki 4b. Glede na vrednosti sipalnega koe}cienta opazimo, da je svetilo pri večjih vrednostih
σs manj vidno skozi kroglo (na sliki 4b desno vidimo po kotu integrirano intenziteto, ki pada z σs). Večina
sipane sevalnosti zapusti kroglo v smereh stran od opazovalca, a nek delež se prerazporedi v mehek odboj
na strani svetila. Kot smo že videli na sliki 10, tak odboj sovpada z medijem, kjer je povprečna prosta
pot kratka – v takem primeru je mnogo bolj verjetno, da bo svetloba medij zapustila na točki, ki je
blizu točke, kjer je v medij vstopila. Značilna oblika za σs → ∞ je vedno bolj podobna Lambertovemu
odboju, ki je sorazmeren z cosϕ. Torej lahko razumemo, da se zadostno gost sipalni medij za svetlobo
obnaša kot ”trd” objekt z difuznim odbojem.

Zanimivo je pogledati vpliv pigmenta na sipanje svetlobe v primeru, da beli pigment nanašamo na
neko površino, ki že ima svoje optične lastnosti. Na sliki 6 beli pigment nanesemo na črno kroglo, t. j.
na idealni absorber svetlobe, ki ima na površini sevalnost L = 0. S tem postaja črni objekt vedno bolj
odbojen, z σs → ∞ se približuje Lambertovemu pro}lu difuznega odboja. Drug zanimiv robni pogoj
vidimo na sliki 6 desno, kjer je beli pigment nanesen na zrcalno površino, kjer je odboj singularen po
kotu (kotna porazdelitev odbite svetlobe je Diracova delta funkcija okoli preko normale prezrcaljenega
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Slika 10: Sipanje 256 vzorcev (žarkov) za tri monokromatske absorpcijsko-sipalne medije oz. tri kompo-
nente več-kromatskega (RGB) medija. Žarki začnejo pot pri (0, 1, 0), obrnjenem naravnost navzdol, v
smer (0,−1, 0). Po vstopu v medij se svetloba sipa in absorbira različno, glede na koe}cienta σa, σs. Z
nasičenjem barve in desno zgoraj v manjših sličicah je prikazana sevalnost, ki jo še nosi ta žarek. (Levo)
Šibko sipalni medij brez absorpcije (σs, σa) = (1, 0). Vidimo, da se je prosta pot relativno dolga, seval-
nost pa se vseskozi ohranja. (Sredinsko) Močno sipalni medij brez absorpcije (σs, σa) = (5, 0). Prosta
pot je v tem meniju približno 5-krat krajša, žarki le plitvo vstopajo v površino medija. (Desno) Šibko
sipalni medij z absorpcijo (σs, σa) =

(
1
2 ,

1
2

)
. Ker je skupni atenuacijski koe}cient σt = σa + σs enak kot

v mediju brez absorpcije (levo), je povprečna pot v mediju enaka (žarki postajajo bolj sivi, glej tudi β
desno zgoraj), a zaradi absorpcije sevalnost vzdolž poti žarkov eksponentno upada.

φ = 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

100◦ 110◦ 120◦ 130◦ 140◦ 150◦ 160◦ 170◦ 180◦

Slika 11: Krogla absorpcijsko-sipalnega medija z tremi (RGB) komponentami koe}cientov σs =(
1, 100, 1

2

)
in σa =

(
0, 0, 1

2

)
. Kvalitativno so obnašanja treh spektralnih komponent podobna mediju

na sliki 10, a močno sipanje zelene komponente je še bolj poudarjeno. Slike so posnete pod različnimi
koti opazovalec-svetilo (skica 4a). Vidimo, da je odboj zelen, prepuščena svetloba pa je pretežno rdeča,
z nekoliko modre komponente (torej rdeče-vijolična).
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φ = 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

100◦ 110◦ 120◦ 130◦ 140◦ 150◦ 160◦ 170◦ 180◦

Slika 12: Nanos absorpcijsko-sipalnega medija na zrcalni krogli. Medij je enak kot na sliki 11, svetilo pa
je 8-krat večje.
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Slika 13: (a) Poti 256 žarkov za enak tro-kromatski medij kot na sliki 10, z dodatkom tega, da imamo
pod površino medija dodane še robni pogoj Lambertovega odboja. (b) Tro-kromatski medij iz slike (a)
v postavitvi z lučmi rdeče, zelene in modre barve. Vidimo, da rdeča komponenta globoko prodre v pol-
prostor pod kroglo, medtem ko je širitev zelena komponenta mnogo bolj omejeno, večji del se je odbije.
Še bolj jasno se to vidi, ko dodamo škatle, ki zamejujejo posamezna svetila. Zelena komponenta meče
izrazito senco, rdeča pa brez težav prodre skozi medij pod škatlo. Modra komponenta podobno kot rdeča
prodira globoko v medij, a se pri tem tudi znatno absorbira, torej je soj manj svetel. (c) Enako kot slika
(b), le v sivih tonih ločene rdeče, zelene in modre barve za lažjo primerjavo.
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vpadnega kota). Škatlast vrh odboja je namesto pri kotu ϕ = π premaknjen na kot ϕ = 0, torej se
zrcalni in mehki (Lambertov) odboj prekrivata. Tak kombiniran odboj je značilen za mnogo objektov v
resničnem svetu, kot bomo videli v razdelku 4. Poleg presekov v ravnini θ = π/2 si na slikah 5, 7 in 8
pogledamo še dejanske izglede krogel za polno kroglo in nanose na črno oz. zrcalno kroglo.

3.2 Nanosi monokromatskega pigmenta
Pogledamo si lahko tudi kako absorpcijsko-sipalna koe}cienta vplivata na izgled odbite svetlobe. Najbolj
preprosto lahko to preverimo v geometriji ravne plasti neskončne debeline (kot na sliki 10) v katero
pošiljamo žarke. Odbita sevalnost v odvisnosti od razmerja r = σs

σa

je narisana na sliki 14 za kroglo
absorpcijsko-sipalnega materiala in na sliki 15 za nanos na črni ter zrcalni podlagi. Razmerje r je
relevantno, ker nastopa kot edini parameter v Kubelka-Munk teoriji [6], kjer je odboj od neskončno
debelega sloja absorpcijsko-sipalnega materiala podan kot

R(KM)
∞ = 1 + r −

√
r2 + 2r, r =

σa

σs

. (20)

Na sliki 14 desno in na sliki 16 vidimo vpliv razmerja r še v krogelni geometriji, kjer je simetrija na
skaliranje zlomljena.

3.3 Simulacijo več-kromatske svetlobe
Zaenkrat smo simulirali le transport za eno spektralno komponento svetlobe. Posamezne spektralne
komponente pa se širijo povsem neodvisno, zato je razširitev na več-kromatsko svetlobo zelo preprosta.
Preden se posvetimo psiho}ziološkim odzivnim funkcijam in izmerjenim absorbcijsko-sipalnim spektrom
si poglejmo prototipni material, ki rdečo svetlobo šibko sipa, zeleno močno sipa, modro pa sipa in
absorbira. Na sliki 10 vidimo poti žarkov po vstopu v medij, kjer vidimo, kako se širijo različne spektralne
komponente. Na sliki 13a levo dodamo pod površino medija še trdno površino z Lambertovim odbojem.
Na slikah 13a desno in 11 in 12 pa izgled polne krogle in nanosa na zrcalno kroglo po različnih kotih
osvetlitve.

4 Izgled preko izmerjenih absorpcijsko-sipalnih spektrov
4.1 Prehod iz spektra na barvo: XYZ in sRGB barvna prostora
Da bomo prikazali izgled sevalno-absorpcijskih materialov želimo spekter odbite svetlobe preslikati v
barve. Barvni prostor je standard, osnovan na psiho}zičnih meritvah, kjer je opažena svetloba opisana
s tristimulusnimi vrednostmi

X =

∫
L(λ) ·X(λ) dλ, Y =

∫
L(λ) · Y (λ) dλ, Z =

∫
L(λ) · Z(λ) dλ. (21)

Odzivne funkcije X,Y in Z izhajajo iz psiho}zioloških eksperimentov [13, 3], kjer so opazovalci gledali
razdeljeno polje. Na eni polovici je bil monokromatski dražljaj, na drugi pa prilagodljiva mešanica
treh osnovnih barv. Z uravnavanjem intenzitet so dosegli metamerijo, t. j. enak izgled barv, ko so
tristimulusne vrednosti obeh spektrov enake. Odzivne funkcije X(λ), Y (λ) in Z(λ) za CIE1931 barvni
prostor [4] vidimo na sliki 19 levo zgoraj.

Tako dobljene funkcije so podlaga za transformacijo v druge prostore. Ker bomo barve prikazovali na
računalniškem zaslonu, moramo barvo preslikati v sRGB prostor. V dokumentu [11] so podane vrednosti
te linearne preslikave iz XY Z CIE1931 prostora v sRGB prostor kot



RsRGB

GsRGB

BsRGB


 =




3.2410 −1.5374 −0.4986
−0.9692 1.8760 0.0416
0.0556 −0.2040 1.0570






X

Y

Z


 . (22)

Kot odraz omejene izbire primarnih barv (tehnološka omejitev) odzivne funkcije R,G in B zavzemajo
tudi negativne vrednosti (glej sliko 19 levo spodaj). Eksperimentalno to predstavlja to, da so ustrezno
osnovno barvo dodali polju z dražljajem namesto prilagodljivemu polju. Na napravah, ki prikazujejo
barve v sRGB prostoru (siv trikotnik na sliki 19 desno) pa to pomeni, da so takšnih barv z negativnimi
vrednostmi odziva ni mogoče prikazati.
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Slika 14: (a) Vpliv razmerja koe}cientov r = σa
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na odboj od neskončno debele plasti R∞. Vidimo,
da je odboj skoraj v celoti odvisen od razmerja koe}cientov, ne od njunih absolutnih vrednosti, kar
se lepo ujema z Kubelka-Munk analitičnim izrazom R
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∞ . Odstopanje je nekoliko večje za močneje

absorbirajoče medije, kjer začnejo Monte Carlo izračuni odstopati od Kubelka-Munk izraza. (b) Vpliv
sipalnega koe}cienta σs in razmerja r na izgled krogle absorpcijsko-sipalnega materiala.
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Slika 15: Vpliv razmerja koe}cientov r = σa

σs

na odboj od R od plasti pigmenta, pod površino katerega
zahtevamo nek robni pogoj. Za razliko od neskončne plasti na sliki 14, je tu odboj R odvisen tudi od
absolutnih vrednosti, ne le od razmerja absorpcijskega in sipalnega koe}cienta. Zlomljena je namreč
simetrija problema na skaliranje – s tem, da smo ∆y = 1

5 pod površino medija vstavili ravnino z robnim
pogojem. Če sta absolutni vrednosti koe}cientov dovolj veliki (rumena), je ravnina z robnim pogojem
mnogo povprečnih prostih poti od vstopa v medij; tedaj robni pogoji ne vplivajo na širjenje svetlobe.
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Slika 16: Vpliv absorpcijskega koe}cienta σa in razmerja r = σa

σs

na izgled krogle, če je pigment nanesen
na (a) črno kroglo, (b) kroglo z zrcalnim odbojem.
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Slika 17: Vpliv debeline sloja na izgled krogel, če je črni pigment z (σs, σa) = (0, 50) nanesen na belo
kroglo z Lambertovim odbojem (zgornja vrstica) oz. beli pigment z (σs, σa) = (10, 0) nanesen na črno
kroglo (spodnja vrstica).
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Slika 18: Vpliv debeline sloja na izgled krogel, če je črni pigment z (σs, σa) = (0, 50) (zgornja vrstica)
oz. beli pigment z (σs, σa) = (10, 0) (spodnja vrstica) nanesen na kroglo z zrcalno površino.
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Slika 19: Odzivne funkcije CIE1931 barvnega prostora. (Levo zgoraj) Odzivne funkcije X,Y , Z, nepo-
sredno iz [4] podatkov. (Levo spodaj) Odzivne funkcije, izražene v RGB prostoru preko preslikave (22).
Najbolj izrazito je, da so odzivi pri določenih valovnih dolžinah negativni. Takšne barve niso prikazljive
na sRGB zaslonih. (Desno) CIE1931 barvni prostor vseh vidnih barv, z normaliziranima x in y koordi-
natama, tako da je z = 1−x−y. Monokromatske (čiste) barve so prikazane na polni črni črti z oznakami
valovnih dolžin. Na sRGB zaslonih so prikazljive le barve znotraj sivega trikotnika, kot konveksne kom-
binacije sRGB rdeče, zelene in modre točke. Barv izven tega trikotnika na tipičnem zaslonu ne moremo
prikazati.
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Slika 20: Odzivne funkcije X(λ), Y (λ) in Z(λ) za izbrano diskretizacijo (meje bin-ov) spektra na nλ = 3
in nλ = 32 spektralnih komponent. Desno zgoraj v manjši sličici vidimo tudi standardno osvetlitev D65,
s katero je potrebno odzivne funkcije pomnožiti (tega nismo omenili v razdelku 4.1, a je še en pomemben
korak v tem, da odzivne funkcije podane v [4] lahko uporabimo).

nelinearnost človeškega vida in gamma krivulje. poleg tristimulusne de}nicije barvnega prostora
moramo za natančno reprodukcijo barve upoštevati tudi nelinearnost človeškega vida. odziv človeškega
očesa na sevalnost ni linearen, temveč ga približno opisuje potenčni zakon iodziv ∝ l1/γ , pri čemer je
γ ≈ 2.2. takšen odziv je iz tehničnih in zgodovinskih razlogov6 vgrajen tudi v de}nicijo srgb barvnega
prostora. namesto shranjevanja l, so v vrednostih srgb pikslov shranjene vrednosti odzivov iodziv ∈ [0, 1].
če želimo ustrezno prikazati izračunane sevalnosti, jih moramo pred zapisom v sliko enkodirati kot
iodziv ∝ l1/γ in zapisati vrednost iodziv. le tako bo sevalnost, ki bo prikazana na računalniškem zaslonu,
dejansko ∝ l.

Stisk vrednosti (tonemapping). Omenili smo že nelinearno gamma krivuljo, s katero vrednosti
pikslov shranjujemo za pravilno reprodukcijo. A }zikalna sevalnost L, ki jo izračunamo z Monte Carlo
integracijo, je količina v intervalu [0,∞). Za prikaz na računalniškem zaslonu pa so sRGB vrednosti
možne le na intervalu [0, 1]. Potrebujemo torej preslikavo [0,∞) 7→ [0, 1]. Najpreprosteje je vrednosti
preprosto porezati, a tako izgubimo informacije, ki smo jo trudoma izračunali. Alternativno bi vrednosti
lahko reskalirali glede na maksimalno vrednost v sliki. To je prav tako nesprejemljivo, saj s tem večinski
del slike postane povsem preveč temen. Primerna in pogosta preslikava, ki jo bomo uporabili za slike,
izračunane v tej nalogi, bomo uporabili Reinhartov stisk

Lst = L · 1 + L/B2

L+ 1
, (Reinhartov stisk), (23)

pri čemer je B parameter s katerim nadziramo moč tega stiska. Za B 7→ ∞ bodo preslikane vrednosti
zagotovljeno v [0, 1], za manjše B pa bodo nekatere vrednosti še vedno Lst > 1, kar preprosto porežemo.
Parameter B izberemo glede na osvetlitev, v tej nalogi je stalno B = 3. Stisk in porez na [0, 1] sta
izvedena pred gamma preslikavo, saj gamma preslikava zahteva L ∈ [0, 1].

4.2 Izmerjeni spektri pigmentov
Spektri so bili izbrani na podlagi meritev absorpcijskih in sipalnih koe}cientov [7] za ultramarine moder,
viridian zelen ter okra rdeč oz. rjav pigment. Meritve so bile iz slik v članku ekstrahirane z uporabo
Engauge programa. Ker smo jih želeli uporabiti v kombinaciji z odzivnimi funkcijami 19 so bile meritve
z uporabo zlepka reinterpolirane na interval [360 nm, 830nm], po razmakih 1nm. Interpolacija ob robih
intervala predstavlja bolj ali manj ugibanje, a na končni rezultat to ne vpliva, saj so odzivne funkcije za
λ < 380nm in λ > 700nm zelo majhne.

Na podlagi absorpcijskega in sipalnega spektra σa(λ) in σs(λ) lahko poračunamo odbojni spekter od
neskončno debele ravnine pigmenta R∞(λ). Na slikah 21, 22 in 23 primerjavo z Monte Carlo izračunom

6tehnični razlog je, da je tako natančnost diskretizacije intervala [0, 1] na 8 bitov bolje izkoriščena. zgodovinski razlog je
v tem, da so crt monitorji na katodne cevi imeli napetostni odziv, ki je bil posrečeno (skoraj) inverz omenjenega potenčnega
zakona, t. j. icrt ∝ v

γ

crt, s potenca posrečeno blizu tiste za odziv človeškega očesa, γcrt ≈ 2.5.
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Slika 21: Absorpcijsko-sipalni spekter ultramarine pigmenta iz [7] in izračunan odbojni spekter za ne-
skončno debelo plast takšnega pigmenta R∞. (Levo) Izmerjen spekter in interpolanta. Spekter je reska-
liran tako, da je

∫
σs(λ) dλ = 1, a razmerje med σa in σs je ohranjeno. (Desno) Odboj od neskončno

debele plasti pigmenta R∞. Z zeleno je narisan Monte Carlo izračun, ki se precej lepo ujema z analitično
Kubelka-Munk napovedjo. (Med grafoma) Rekonstrukcija barve iz spektrov odboja R∞(λ). (Skrajno
desno) Dejanski primer ultramarine pigmenta (vir slike: Wikipedia).
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Slika 22: Absorpcijsko-sipalni spekter viridian pigmenta iz [7] in odbojni spekter za neskončno debelo
plast takšnega pigmenta R∞. (Levo) Izmerjen in interpolanta. (Desno) Odboj od neskončno debele
plasti pigmenta R∞, Monte Carlo izračun z zeleno se lepo ujema z analitično Kubelka-Munk napovedjo.
(Skrajno desno) Dejanski primer sintetičnega viridian pigmenta (vir slike: Wikipedia).

spektra R
(MC)
∞ (λ) poračunamo tudi Kubelka-Munk analitični približek po izrazu (20). Vidimo, da sta

obliki spektrov zelo podobni, kar je pričakovano, saj Kubelka-Munk približek primeru neskončne ravnine
dobro deluje. Odstopanje je bolj opazno za močno absorbirajoče dele spektra, kjer je r � 1, kar se
ujema z že opaženim obnašanjem modela na sliki 14. Na podlagi izračunanega odboja R∞(λ) lahko
določimo, kakšne barve je takšna neskončna plast pigmenta. V ta namen poračunan spekter pomnožimo
in integriramo z ustreznimi odzivnimi funkcijami, kot smo jih de}nirali v razdelku 4.1.

4.3 Vpliv debeline pigmenta na izgled in barvo
Kot smo poračunali za odboj od neskončno debele plasti, lahko poračunamo tudi za končno debele
plasti. Na slikah 24, 26 in 28 izračunamo izgled krogle z 100 vzorci na piksel in diskretizacijo spektrov
na 32 komponent (kot na sliki 20 desno). Ker je končni prikaz RGB, je število spektralnih kanalov
precej irelevantno, le da je nλ ≥ 3. Dodatni kanali so v večini le izpovprečeni po integraciji z odzivnimi
funkcijami.

Poleg barv in izgleda si pogledamo tudi dejanske odbojne spektre za končno debelo planarno plast
pigmenta na beli in na črni površini (slike 25, 27 in 29. Vidimo, da oblika spektra gladko preide v belo
oz. črno barvo glede na debelino sloja pigmenta.
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Slika 23: Absorpcijsko-sipalni spekter ochre pigmenta iz [7] in odbojni spekter za neskončno debelo
plast takšnega pigmenta R∞. (Levo) Izmerjen in interpolanta. (Desno) Odboj od neskončno debele
plasti pigmenta R∞, Monte Carlo izračun z zeleno se lepo ujema z analitično Kubelka-Munk napovedjo.
(Skrajno desno) Dejanski primer viridian pigmenta (vir slike: Wikipedia).
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Slika 24: Krogle, obdane z plastjo absorbirajo-sipalnega ultramarine pigmenta, z absorpcijsko-sipalnim
spektrom iz slike 21. Plast je nanesena na kroglo z Lambertovim odbojem (zgornja vrstica), na črno
kroglo (sredinska vrstica) in na kroglo z zrcalnim odbojem (spodnja vrstica).
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Slika 25: Spreminjanje odbojnega spektra R(λ), ko spreminjamo debelino nanosa ultramarine pigmenta
na beli (Lambertov odboj) in na črni površini.

18

https://commons.wikimedia.org/wiki/File:Drei_verschiedene_Ockert%C3%B6ne.JPG


d = 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 ∞

d = 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 ∞

d = 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 ∞

Slika 26: Krogle, obdane z plastjo absorpcijsko-sipalnega viridian pigmenta, z absorbcijsko-sipalnim
spektrom iz slike 22. Plast je nanesena na kroglo z Lambertovim odbojem (zgornja vrstica), na črno
kroglo (sredinska vrstica) in na kroglo z zrcalnim odbojem (spodnja vrstica).
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Slika 27: Spreminjanje odbojnega spektra R(λ), ko spreminjamo debelino nanosa viridian pigmenta na
beli (Lambertov odboj) in na črni površini.
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Slika 28: Krogle, obdane z plastjo absorpcijsko-sipalnega ochre pigmenta, z absorbcijsko-sipalnim spek-
trom iz slike 23. Plast je nanesena na kroglo z Lambertovim odbojem (zgornja vrstica), na črno kroglo
(sredinska vrstica) in na kroglo z zrcalnim odbojem (spodnja vrstica).
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Na črni
d = 0

d = 0.001

d = 0.004

d = 0.016

d = 0.064

d = 0.1

d = 0.2

d = 0.4

d = 0.6

d = 0.8

d = 1

d = 100

Slika 29: Spreminjanje odbojnega spektra R(λ), ko spreminjamo debelino nanosa ochre pigmenta na beli
(Lambertov odboj) in na črni površini.
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Zaključek
V nalogi smo simulirali transport svetlobe z Monte Carlo integracijo, s sledenjem potem. Zadovoljen
sem, da mi je uspelo z lastno kodo realistično (lastno subjektivno mnenje) simulirati izglede nanosov
pigmenta na različne materiale (robne pogoje). Znaten tehničen iziv je predstavljala sama hitrost take
integracije, kar sem razrešil z več-pomembnostnim vzorčenjem, z večnitnim izvajanjem programa in z
uporabo jezika kot je C.
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