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Povzetek
Kljub industrijski pomembnosti stekel ostaja steklasti prehod brez globoke }zikalne razlage. Uporabno
analogijo predstavljajo sistemi koloidnih suspenzij, ki prav izkazujejo steklast prehod, t. i. koloidna
stekla. Ti sistemi so zaradi mezoskopske skale gradnikov eksperimentalno dostopnejši in preko mikrosko-
pije in sipalnih eksperimentov omogočajo direkten vpogled v mikroskopsko strukturo koloidne suspenzije
blizu steklastega prehoda. V seminarju si pogledamo fenomenologijo koloidnega steklastega prehoda in
relevantne eksperimentalne metode. Na kratko predstavimo tudi osnovne koncepte teorije MCT (ang.
mode-coupling theory), ki ponuja nesporno impresivne napovedi eksperimentalnih meritev. Pri tem izpo-
stavimo nedavni uspeh MCT teorije, kjer so izračuni v okviru teorije napovedali, eksperimentalne meritve
pa nato potrdile presihajoč (ang. reentrant) fazni prehod steklo-kapljevina-steklo, ko koloidni suspenziji
dodajamo ne-adsorbirajoč polimer in s tem vzbudimo privlačno silo med delci. Fenomenološko si pogle-
damo tudi rezultate reoloških meritev in omenimo pojav dinamičnih heterogenosti in staranja steklastih
materialov. Nekaj kratkega povemo tudi o izzivih, ki jih steklasti sistemi predstavljajo za simulacije, in
o potencialnih rešitvah, ki bi omogočale simulacije v pogojih, primerljivih z eksperimentalnimi.

1 Uvod

1.1 Steklasti prehod
V }ziki kondenzirane snovi pojem stekla zajema ši-
rok nabor snovi, ki so po lastnostih podobne tako
kapljevinski kot kristalni fazi. Steklasta faza nasto-
pi, ko tekočino shladimo na temperaturo pod tem-
peraturo steklastega prehoda Tg. Pri takem ohla-
janju viskoznost snovi η naraste do točke, da snov
postane trdna. Ohlajanje mora biti dovolj hitro,
da se snov izogne kristalizaciji. Rast kristala zahte-
va prečkanje energijske bariere; za steklasti prehod
mora biti ohlajanje hitro glede na časovno skalo nu-
kleacije in rasti kristala. Steklasti prehod torej ni
termodinamski fazni prehod [1], temveč je kinetičen
pojav.

Tradicionalno in aplikativno so pomembni mate-
riali (npr. SiO2 stekla), ki jih iz kapljevinaste tali-
ne ohlajamo s hitrostmi ∼ 10−2 Kis−1. Z uporabo
modernejših eksperimentalnih tehnik in v simula-
cijah pa je razvidno, da hitrejše hlajenje povzroči
prehod v steklasto fazo tudi v snoveh, kjer ga sicer
ne bi pričakovali, npr. v kovinskih zlitinah [3] in
celo v simulacijah kapljevinastega mono-atomskega
plina [4].

Temperaturo prehoda Tg de}niramo nekoliko ar-
bitrarno kot temperaturo, pri kateri viskoznost na-
raste do mere, da snov teče le na časovnih skalah,
ki niso eksperimentalno dosegljive. Pogosto je meja
viskoznosti nekaj 1015-kratna vrednost viskoznosti
vode, saj so višje viskoznosti težko merljive. Na ar-
bitrarnost takih de}nicij kaže npr. primer bitumna

Slika 1: Porast viskoznosti koloidne suspenzije,
ko se približujemo polnilnemu razmerju steklastega
prehoda ϕg ≈ 0.58, ki ga dobro opiše Doolittlova
enačba (1). Povzeto po [2].

(ang. pitch), ki je pri sobni temperaturi izkustve-
no lomljiva trdnina. Na časovni skali mnogih let
pa vseeno teče in se obnaša kot viskozna kapljevina
(pitch-drop eksperiment [5]).

1.2 Koloidni steklasti prehod
Koloidi so razred več-faznih snovi, sestavljenih iz
delcev velikosti 10nm− 10µm. Med koloide spada-
jo npr. emulzije (kapljice v nemešljivi kapljevini),
aerosoli (kapljice v plinu), pene (plinski mehurčki
v kapljevinskem oz. trdnem mediju). Poleg tega,
da so koloidi razširjeni v biološkem svetu in indu-
strijskih aplikacijah, so zanimivi tudi kot modelski
sistemi, ki so zaradi mezoskopskih velikosti delcev
bolj dostopni za eksperimentalno preučevanje v la-
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pG, εG pη, εη
ε = εG + εη

Slika 2: Maxwellov model viskoelastične snovi,
predstavljen z kombinacijo vzmeti z elastično kon-
stanto G in dušilnika z viskoznostjo η.

boratoriju [2].
Koloidne suspenzije trdninskih kroglic v kaplje-

vini izkazujejo steklasti prehod, ki pa ni funkcija
temperature, temveč polnilnega razmerja

ϕ :=
4π

3

(a/2)3N

V
=

V (1)N

V
,

pri čemer je a premer kroglic, V (1) je volumen ene
kroglice, N/V pa njihova številska gostota. To ko-
loidna stekla ločuje od molekularnih stekel in njiho-
vega steklastega prehoda, ki je funkcija temperatu-
re. Izvorno namenjena za opis molekularnih stekel,
Doolittlova enačba dobro opiše porast viskoznosti v
koloidnih steklih

η

η0
= C exp

{
Dϕ

ϕm − ϕ

}

, (1)

pri čemer so C = 1.2, D = 1.65 in ϕm = 0.638 [2].
Na sliki 1 vidimo značilno naraščanje viskoznosti
koloidne suspenzije, ko se približujemo steklastemu
prehodu. V molekularnih steklih opazimo podobno
obnašanje, a z meritvami, ki namesto štirih obsegajo
kar dvanajst velikostnih redov porasta v viskozno-
sti [1].

V tem seminarju bomo obravnavali steklasti pre-
hod v koloidnih sistemih trdninskih kroglic v kaplje-
vinskem mediju. Zanimanje za steklastega prehod
sega do 80-ih letih prejšnjega stoletja [6, 7] in je mo-
tivirano s podobnostmi med koloidnimi in moleku-
larnimi stekli [8]; zato bomo obnašanja na mestih,
kjer je primerno, povezali s steklastim prehodom v
molekularnih steklih.

1.3 Viskoelastičnost in relaksacija
V nadaljevanju bomo namesto viskoznosti bolj na-
ravno govorili o relaksacijskem času τ . Dolgi rela-
ksacijski časi τ ustrezajo snovi z veliko viskoznostjo
η, kar najlažje vidimo na preprostem Maxwellovem
modelu viskoelastične snovi. Elastični odziv take
snovi na strižno napetost p je strižna deformacija

ε = p/G, kjer je G strižni elastični modul. Takšne-
mu Hookovemu odzivu (vzmet) dodamo še viskozni
odziv (dušilnik), kot je shematično prikazano na sli-
ki 2. Tedaj je skupni raztezek vzmeti in dušilnika
ε = εG + εη

ε̇ =
ṗ

G
+

p

η
, (2)

saj je εG = p/G in ε̇η = p/η za skupno nape-
tost v snovi p = pG + pη. Če viskoelastični medij,
ki ga opisuje (2), strižno raztegnemo za σ0, se bo
napetost v materialu eksponentno relaksirala kot
p(t) = Gε0 · e−t/τ z relaksacijskim časom

τ = η/G. (3)

Relaksacijski čas v tem smislu določa časovno ska-
lo mikroskopskih relaksacij gradnikov in je ključni
parameter za opis steklastega prehoda.

2 Fenomenologija
Obravnavali bomo koloidne suspenzije trdih sferič-
nih delcev (ang. hard-spheres) premera a, z odboj-
nim meddelčnim potencialom

V (r) =

{

0 r < a/2,

∞ sicer.
(4)

Ker se kinetična energija pri trkih ohranja, je entro-
pijski člen edini netrivialen prispevek k prosti ener-
giji F = −TS. Particijska funkcija vsebuje le kon}-
guracijski del (koliko prostora je sferam na voljo) in
je odvisna le od polnilnega razmerja ϕ = 4π(a/2)3N

3V .
Polnilno razmerje je torej edini kontrolni parameter
za fazno obnašanje takšnih trdih sfer.

Slika 3: Fazni diagram trdih sfer. Povzeto po [2].

Fazni diagram za koloidno suspenzijo trdih sfer
vidimo na sliki 3. Pri majhnih polnilnih razmerjih
pod ϕkpl = 0.494 se koloidna suspenzija obnaša kot
kapljevina. Nad ϕkpl opazimo, da deli vzorca zač-
nejo prehajati v ravnovesno kristalno fazo. Alter-
nativno celoten vzorec vstopi v neravnovesno sta-
nje podhlajene kapljevine, ki nad mejno vrednostjo
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Slika 4: Izmerjene časovne odvisnosti odmika 〈r2〉,
za polnilna razmerja ϕ = 0 (skrajno levo) in ϕ ∈
[0.466, 0.583] (od leve proti desni). Delci s pre-
merom a = 0.2µm; čas v enotah difuzivnega časa
τD ∼ 0.02 s. Povzeto po [10].

ϕg ≈ 0.58 začne prehajati v steklasto fazo. Stekla-
sta faza je prisotna vse od ϕg do zgornje meje na-
ključnega polnjenja ϕRCP ≈ 0.64 [9]. Steklasta faza
je torej neravnovesno stanje, prisotno za 0.58 ≲ ϕ ≲

0.64 [2]. Nad ϕRCP je mogoča zgolj še kristalna faza,
do teoretične meje ϕHCP = π/3

√
2 ≈ 0.74.

2.1 Mikroskopske relaksacije
A priori časovno skalo v koloidnih steklih določa
Brownovo gibanje delcev, za katerega vemo, da pov-
prečni (za vse delce) kvadrat odmika raste linearno

〈r2〉 =
〈[

r(t)− r(0)
]2
〉

= 6Dt. (5)

Časovna skala je tedaj difuzivni čas τD, ki ga ra-
zumemo kot čas, v katerem delec difundira za en
premer stran od začetnega položaja

τD ∼ a2

D
, (6)

Slika 5: Trajektorija 1.18µs delca v koloidni suspen-
ziji blizu koloidnega steklastega prehoda (ϕ = 0.56).
Delec se ∼ 500 s zadržuje v eni kletki, nato pa pre-
skoči v drugo kletko. Povzeto po [11].

pri čemer je difuzijski koe}cient D podan z Stokes-
Einstein-Sutherlandovo relacijo

D =
kT

6πη0a
, (7)

pri neki termični energiji kT in viskoznosti topila η0.
Značilna velikost τD v eksperimentih je ∼ 10ms,
kar je kar približno 108-krat daljši čas od karakte-
rističnih difuzijskih časov v kapljevinah oz. talinah
molekularnih stekel.

2.2 Učinek kletke
Za prosto difundirajoče delce bi pričakovali linearno
naraščanje kvadrata odmika s časom. V steklasti
koloidni suspenziji pa difuzijo delcev omejuje pri-
sotnost njihovih tesnih sosedov – okolica sosednjih
delcev deluje kot ”kletka” (ang. cage), ki gibanje
delca močno omeji. Na sliki 4 vidimo časovna na-
raščanje 〈r2〉 blizu koloidnega steklastega prehoda.
Pri majhnih časih, ko delec še ne zadane mej oko-
liške kletke, je gibanje difuzijsko 〈r2〉 ∝ t. Kasne-
je pri časih t > τD, pa je opazno izrazito zastaja-
nje, povzročene s kletkami okoliških delcev. Pri ve-
čjih časih delci vseeno pobegnejo iz kletk; obnašanje
pa lahko karakteriziramo z dolgo-časovno difuzijsko
konstanto

D∞ := lim
t→∞

〈r2〉
6t

, (8)

ki je znatno manjša od tiste za prosto difuzijo (iz-
raz (7)). Takšna anomalna difuzija je značilna za
podhlajeno kapljevino, ko se približujemo steklaste-
mu prehodu pri ϕg. Z direktim sledenjem delcem
pod konfokalnim mikroskopom [11], vidimo, da se
delci res zadržujejo znotraj kletk, po dolgem času
pa med njimi preskakujejo (trajektorija na sliki 5).

2.3 Dinamični strukturni faktor
Mikroskopske pozicije vseh N delcev v kapljevini
ali steklu lahko predstavimo z gostoto oblike

ρ(r, t) :=
N∑

j=1

δ (r − rj(t)) , (9)

ki imajo za Fourierove komponente ρ(q, t) gostotne
vale

ρ(q, t) =
∫

ρ(r, t)eiq·r dr =

N∑

j=1

eiq·rj(t), (10)

V sipalnih eksperimentih pogosto merimo t. i. sta-
tični strukturni faktor

S(q) = 1

N

〈

ρ(q, 0)∗ρ(q, 0)
〉

, (11)

3
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pri čemer 〈•〉 razumemo kot termodinamsko pov-
prečje. V kapljevinasti fazi delci nimajo }ksnih do-
ločenih pozicij, a v izotropnem strukturnem faktor-
ju S (|q|) vseeno vidimo (glej sliko 6 levo) vrh pri
q ∼ 2π

(a/2) ; vrh postane višji in ostrejši, ko večamo
polnilno razmerje.

Statični strukturni faktor za steklasto fazo koloi-
dne suspenzije je zelo podoben tistemu za kapljevi-
nasto fazo. Za več informacij o steklasti fazi lahko
statični strukturni faktor posplošimo na časovno-
odvisni strukturni faktor, merjen preko vmesne si-
palne funkcije oz. ISF (ang. intermediate scattering
function)

F (q, t) = 1

N

〈

ρ(q, 0)∗ρ(q, t)
〉

, (12)

ki meri časovno avtokorelacijo posameznih gosto-
tnih valov, ki pritičejo valovnim vektorjem q. V
kapljevini, kjer delci difundirajo en mimo druge-
ga, postane po nekem kratkem času (nekajkrat τD)
gostota ρ(r, t) povsem nekorelirana z začetno go-
stoto ρ(r, 0). Zato vidimo v preprostih kapljevi-
nah značilni hitri eksponentni razpad, t. i. β-
relaksacijo [12] v časovni odvisnosti F (q, t) za nek
}ksen q. Če bi bili delci v snovi negibni (npr. v
kristalu), bi ne opazili relaksacije v ISF, temveč bi
za vse čase veljalo F (q, t) = S(q). Blizu stekla-
stega prehoda, torej za ϕ ≲ ϕg, se zaradi učinka
kletk začne pri časih t > τD oblikovati rahel pla-
to oz. prevoj. Pri majhnih časih se delci gibljejo
znotraj kletk svojih sosedov, kar ustreza t. i. β-
relaksaciji. Plato v relaksaciji ISF ustreza meji tega
gibanja znotraj kletk, nadaljnja β-relaksacija pa po-
begu delcev iz kletk. Ta sekundarna α-relaksacija
postaja vedno počasnejša (plato pa vedno daljši),
ko se približujemo steklastemu prehodu. Vse do-
kler je gibanje delcev ergodično, je snov kapljevi-
na; ko postane ne-ergodično za vse eksperimental-
no dostopne čase, govorimo o nastopu steklaste fa-
ze. Vrednost ISF pri največjih eksperimentalnih ča-
sih f(q) = limt→∞ F (q, t) je t. i. parameter ne-
ergodičnosti in je pogosto vzet kot ureditveni para-
meter za steklasti prehod [12], ki je enak f(q) = 0
v kapljevinastem in f(q) > 0 v trdninskem stanju.

3 Teorija MCT
Pomembna teorija steklastega prehoda v koloidnih
kot tudi molekularnih steklih je t. i. MCT teorija
(ang. mode-coupling theory). Podrobna izpeljava bi
bila predolga in preveč formalistična, zato orišemo
le nekaj osnovnih konceptov teorije, nato pa disku-
tiramo napovedi in ujemanje z eksperimentom.

Iz klasične mehanike vemo, da je se v sistemu s
Hamiltonianom H poljubna količina A(t) časovno

Slika 6: (Levo) Statični strukturni faktor za sis-
tem trdih sfer, izračunan z Percus-Yevickovim pri-
bližkom. (Desno) Shematični prikaz dinamičnega
strukturnega faktorja pri prehodi iz kapljevine v
steklo. Povzeto po [12].

razvija kot
Ȧ(t) = {A(t),H}, (13)

pri čemer je {•, •} Poissonov oklepaj, ali enakovre-
dno Louvillov operator [13] L : A 7→ 1

i
{A,H}, ta-

ko da je unitarni časovni razvoj eksplicitno zapisan
kot A(t) = eiLtA(0). Tak časovni razvoj je for-
malno točen, a ne preveč uporaben za analizo. V
MCT teoriji se poslužimo Mori-Zwanzig projekcij-
skega formalizma [14], kjer gledamo operator

P : X(t) 7→
(
A,X(t)

)(
A,A

)−1A, (14)

pri čemer je (•, •) poseben skalarni produkt, de}ni-
ran kot termodinamsko povprečje (A,B) = 〈A∗B〉.
Če sta A in B vektorski količini, je (A,B) matri-
ka. Operator P deluje kot projektor na časovno-
konstantno količino A = A(0) in z njim lahko uni-
tarni časovni razvoj razdelimo na dva dela. Na del,
ki leži v sliki projektorja (počasni del) in na del,
ki leži v jedru projektorja (hitri, ~uktuacijski del).
Če uporabimo 1 = P + 1−P na enačbi unitarnega
razvoja (13)

dA(t)

dt =
[
P + 1− P

]
iLA(t)

= PiLA(t)
︸ ︷︷ ︸

počasni del

+
[
1− P

]
iLA(t),

︸ ︷︷ ︸

hitri (~uktuacijski) del

(15)

nam kratek račun (glej [13, str. 6]) pokaže, da za
časovni razvoj A(t) velja integro-diferencialna enač-
ba

dA(t)

dt = iΩA(t)
︸ ︷︷ ︸

počasni del

−
∫ t

0

M(s)A(t− s) ds+ f(t)
︸ ︷︷ ︸

hitri (~uktuacijski) del

,

(16)
pri čemer je iΩ := iPL = (A, iL)(A,A)−1 t. i.
frekvenčna matrika, ki izloči del dA

dt , ki ostane v
počasnem delu prostora. Hitro oz. ~uktuacijski del
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dinamike žene člen f(t), ki ga razumemo kot neka-
kšno silo, de}niran pa je kot

f(t) := eP⊥iLt · P⊥iLA(t), P⊥ := 1− P , (17)

kar razumemo kot projekcijo dA
dt v prostor hitre

komponente in unitarni časovni razvoj v tem pod-
prostoru. Pod integralom v (17) nastopa še spomin-
ska funkcija (ang. memory function), de}nirana kot
M(t) := (f, f(t))(A,A)−1. Enačba (17) je eksaktna
in velja za povsem poljubno količino A(t). Dejansko
nas bo zanimala vektorska količina

A(t) :=

(
ρ(q, t)

d
dtρ(q, t)

)

, (18)

še bolj konkretno pa njena avtokorelacijska matrika

C(t) := (A,A(t)) = 〈A∗(0)A(t)〉, (19)

ki v komponentah vsebuje C11 = N · F (q, t) in od-
vod C12 = N · dF (q,t)

dt . Tudi korelacijska matrika
C(t) je količina in zanjo velja splošna oblika časov-
nega razvoja (17). A če enačbo (17) z leve pomnoži-
mo z A∗ in vzamemo termodinamsko povprečje 〈•〉
obeh strani, bo člen ~uktuacijske sile f(t) odpadel,
saj živi v jedru projektorja P in velja (A, f(t)) = 0.
Torej se korelacijska matrika časovno razvija kot

dC(t)

dt = iΩC(t)−
∫ t

0

M(s)C(t− s) ds. (20)

V tej matriki je vsebovan C12 = N · dF (q,t)
dt , in če

poračunamo potrebne matrične elemente Ω in M(t)
(glej [13]), dobimo integro-diferencialno enačbo

d2F (q, t)
dt2 +

(
q2kT

mS(q)

)

F (q, t) =

− m

NkT

∫ t

0

〈

R−qRq(s)
〉dF (q, t− s)

dt ds,

(21)

pri čemer je m masa posameznega delca; v inte-
grandu pa je prisotna avtokorelacija Rq, ki je izje-
mno kompleksna količina, ki odraža mikroskopske
~uktuacije sistema

Rq :=
1

iq

(
d2ρ(q, t)

dt2 +
q2kT

mS(q)ρ(q, t)
)

. (22)

Vidimo torej, da nam MCT da integro-diferencialno
enačbo drugega reda za F (q, t). Splošna obli-
ka (21) je še vedno neprimerna za kakršenkoli iz-
račun, saj vsebuje avtokorelacijo Rq. Na tej točki
so potrebni nekateri približki, ki poskušajo oceniti
〈

R−qRq(s)
〉

s tem, da Rq projicirajo v produktno
bazo {ρ(qi, t)ρ(qj , t)}ij . Za tehničen postopek in

10 1 100 101 102 103

as t

0.0

0.5

1.0

F(
t)

Shematski MCT ( = 1)
F(t) + 2F(t) = aF(s)2F(t s) ds

a= 1
a= 2
a= 3
a= 3.99
a= 4.0
a= 4.01
a= 5
a= 6

Slika 7: Rešitve shematskega MCT modela. Vidi-
mo, da ima oblika rešitve kvalitativen preskok pri
mejni vrednosti a = ag = 4, za a > ag se rešitev ne
relaksira k 0, temveč h končni vrednosti.

več motivacije glej [13, str. 10], tu pa navedemo le
končni rezultat

d2F (q, t)
dt2 + ω2F (q, s) = −

∫ t

0

K(q, s)dF (q, t− s)

dt ds,

pri čemer je ω2 := q2kT
mS(q) . Spominska funkcija, ki

smo jo dobili s približkom za
〈
R−qRq(s)

〉
pa je obli-

ke

K(q, s) := m

NkT

〈

R−qRq(s)
〉

≈ ρϕkT

16π3m

∫

|Vq−k,k|2F (k, s)F (|k − q|, s) dk,

(23)

Vq−k,k =
1

|q|
{

(q · k) · c(k) + q · (q − k) · c(|q − k|)
}

,

(24)

pri čemer je ρϕ = ϕ/V (1) številska gostota delcev.
V izrazu nastopa direktna korelacijska funkcija c(q),
ki jo lahko izrazimo z Ornstein-Zernike enačbo v
Fourierovi domeni c(q) = 1

ρϕ

(

1− 1
S(q)

)

.

3.1 Shematski MCT
Teorija MCT nam preko integro-diferencialne enač-
be drugega reda (23) napoveduje časovno obnašanje
F (q, t). Kot začetni pogoj enačba potrebuje statični
strukturni faktor S(q). Oblika diferencialne enačbe
je F̈ (q, t) + ω2F (q, t) = −Γ{Ḟ (q, t)}, kar lahko ra-
zumemo kot bolj splošno enačbo dušenega nihanja,
kjer je dušenje podano z nekim funkcionalom.

Analizo in razumevanje si poenostavimo, če za
trenutek povsem pozabimo na q-odvisnost v ISF,

5



B

C

A

Slika 8: Koloidi z dodatkom ne-adsorbirajočega po-
limera. Če se dva koloida približata (glej delca A
in B), je med njima ustvarjen prepovedan oz. de-
plecijski volumen, v katerega se polimeri ne morejo
premakniti. Povzeto po [15].

ter smatramo t. i. shematski MCT model [14],

d2F (t)

dt2 + ω2F (t) = −
∫ t

0

K(shem)(s)
dF (t− s)

dt ds,
(25)

kjer uporabimo K(shem)(s) := aF (s)2. Če bi na-
mesto te oblike uporabili Dirac-delta funkcijo, bi
enačba (25) dejansko bila enačba dušenega niha-
la. Tako pa doda mero nelinearnosti, zaradi ka-
tere rešitve F (t) izkazujejo oster kvalitativen pre-
hod, ko parameter a prečka vrednost ag = 4. Če
je a < ag, relaksira F (t) proti 0 relativno prepro-
sto (β-relaksacija). A ko se približamo vrednosti
ag = 4, se izoblikuje plato. Za vse a > ag je plato
zelo dolg, funkcija se več ne relaksira k vrednosti
0. Zelo pomembno je, da tak model napove nastop
ne-ergodičnega režima, torej steklasti prehod.

Shematični MCT opiše najbolj pomembna obna-
šanja, ki smo si jih od modela želeli. Mnoge napo-
vedi so ohranjene tudi ko rešujemo bolj polno razli-
čico modela, ki vsebuje odvisnosti od q [14]. Dejan-
ski postopek računov za napoved steklastega pre-
hoda vključuje eksperimentalno meritev začetnega
pogoja S(q) za različne gostote ρϕ za koloidna ste-
kla oz. temperature za molekularna stekla. Na sli-
ki 6 smo že videli, da se statični strukturni faktor
nekoliko spremeni z večanjem polnilnega razmerja
ϕ = V (1)ρϕ, te razlike pa se skozi nelinearno integro-
diferencialne enačbo (23) preslikajo na časovno ob-
našanje F (q, t). Iz tega teorija napove tudi potenčni
zakon za relaksacijski čas τ ∝ (T − Tg)

−γ za mo-
lekularna stekla oz. τ ∝ (ϕg − ϕ)−γ , ki dobro opi-
suje simulacije in eksperimente, dokler nismo pre-
blizu steklastega prehoda [13, 16]. Polna q-odvisna
MCT napove tudi časovno odvisnost dolgo-časovne
α-relaksacije, ki je približno F (q, t) ∝ e(−t/τ)β .

Slika 9: Meritve časovnega poteka ISF za kolo-
idno steklo z dodatkom privlačne sile med koloi-
di. Vzorec A je suspenzija trdih sfer brez poli-
mera, naslednji vzorci pa vsebujejo postopno več
ne-adsorbirajočega polimera, ki povzroči entropij-
ski deplecijski odboj med koloidi. Povzeto po [17].

V molekularnih steklih so potrjene tudi še bolj
konkretne in točne napovedi za časovni potek hi-
tre β-relaksacije [14], v koloidnih steklih pa je bolj
atraktivna napoved faznih prehodov, o kateri bomo
govorili v nadaljevanju.

3.2 Dodatek deplecijskega odboja
Pomemben uspeh MCT teorije je vezan na napoved
oblike faznih prehodov v koloidih z dodatkom pri-
vlačne sile med delci. Privlačna sila je posledica te-
ga, da koloidni suspenziji dodamo ne-adsorbirajoč
polimer. Če se koloidna delca v takšni suspenziji
dovolj zbližata, bo med njima ustvarjen deplecijski
volumen (glej sliko 8), ki zmanjša polimerom dosto-
pen volumen in zniža entropijo sistema. Med delci
torej deluje privlačna sila zelo kratkega dosega.

Okoli leta 1999 je več skupin [18, 19, 20] z upora-
bo MCT teorije napovedalo presihajoč (ang. reen-
trant) steklasti prehod, ko trdim sferam postopoma
dodajamo takšno privlačno silo. Teoretična napo-
ved se je izkazala za uspešno v sledečih letih, ko
je bila eksperimentalno potrjena. Na sliki 9 vidimo
izmerjene poteke ISF za vzorce z različnimi koncen-
tracijami ne-adsorbirajočega polimera [17]. Vidimo
izrazito ne-monotono obnašanje F (q, t), ko večamo
koncentracijo polimera, od nič polimera za vzorec A

do največje koncentracije za vzorec H. Vsi vzorci so
pripravljeni s polnilnim razmerjem ϕ ≈ 0.6 in vzor-
ca A in B z najmanj polimera, ohranita obnašanje
trdih sfer in tvorita odbojno steklo, ki ga prepozna-
mo v ne-ergodičnem platoju F (q, t). Z dodatkom
več polimera (vzorci C, D in E) deplecijska privlač-
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Slika 10: Reološka meritev za vzorec odbojnega ste-
kla (levo) in vzorec privlačnega stekla (desno). Na
vzorec 1000 s delujemo z strižno napetostjo σc, na-
to pa napetost umaknemo. Prikazano je povrnjen
delež striga nazaj do nevtralnega stanja γ = 0. Pol-
ni krogci prikazujejo celoten povrnjen delež striga
(1000 s po umiku napetosti), prazni krogci pa hitro
povrnjen delež (0.1 s po umiku). Povzeto po [21].

na sila povzroči, da se koloidna suspenzija ”stali”
in postane kapljevinasta, s samo-difuzijo delcev en-
mimo-drugega in hitro in popolno relaksacijo. Ti
vzorci C, D in E so kapljevinasti, kar omogoči, da
kristalizirajo. Posebej zanimivo pa je, da dodatek
še več polimera kapljevino zopet ”odtali” in za vzo-
rec F, še bolj pa za vzorca G in H opazimo v obliki
F (q, t) zelo počasno relaksacijo; vzorec je na celo-
tni eksperimentalni skali ne-ergodičen. To je t. i.
privlačno steklo (ang. attractive glass), ki ga od od-
bojnega stekla (ang. repulsive glass) loči struktura
delcev, povezanih v toga omrežja, ki jih oblikuje-
jo privlačne sile med delci. Togost teh omrežij je
razvidna iz tega, kako šibka je kratko-časovna β-
relaksacija v potekih ISF za vzorce F, G in H (na
sliki 9 spodaj levo vidimo, da se relaksira le ∼ 1%
amplitude).

4 Onkraj MCT
4.1 Reološke lastnosti
Koloidna stekla smo si predstavljali kot snov, kjer je
relaksacijski čas izjemno dolg (nad eksperimentalno
časovno skalo). Na podlagi takšne ne-ergodičnosti
smo koloidna stekla vzelo za primer trdne faze. Ali
pa so koloidna stekla zares trdna? Bolj neposreden
test za to lahko opravimo z reološkimi meritvami.

Če si koloidna stekla predstavljamo kot visko-
elastični material, imamo v splošnem kompleksni
strižni modul G∗(ω) = G′(ω) + iG′′(ω), ki deluje
kot prenosna funkcija v frekvenčni domeni p(ω) =
G(ω)ε(ω). Realni del G′ je t. i. storage modulus,
ki določa elastični del odziva, imaginarni del G′′

(ang. loss modulus) pa viskozni oz. tekočinski del
odziva, ko se snov ne-elastično deformira. Komple-

ksni strižni modul G∗(ω) merimo preko aplikacije
oscilirajoče strižne napetosti ε(t) = ε0 cos(ωt). Če
je G′ � G′′, je večinski del odziva snovi elastičen
in snov lahko okličemo za trdnino (ne kapljevino).
Takšni reološki eksperimenti z vzorci privlačnih in
odbojnih stekel [21, str. 655] potrdijo, da obnaša-
nje koloidnih stekel v režimu linearnega odziva, ko
je strig manjši od 2% indicira pretežno trdno snov,
saj za vse frekvence ω ∈ [0.01 s−1, 100 s−1] modul
G′ večji od modula izgub (G′ ≈ 10G′′). Pomenlji-
va je tudi primerjava med privlačnim in odbojnim
tipom stekla; odbojno steklo ima približno 8−krat
večji modul G′. Odbojna stekla so torej znatno bolj
toga, zahvaljujoč omrežjem odbojnih sil med delci.

Morda še bolj zanimiv tip reološkega eksperimen-
ta je povrnitev striga po aplikaciji konstantne na-
petosti [21]. Na sliki 10 levo vidimo, da delež povr-
njenega striga pri majhnih strigih linearno narašča
z apliciranim strigom. Za majhne napetosti si lah-
ko predstavljamo reverzibilne deformacije kletk, pri
katerih je ohranjena topološka struktura delcev (so-
sedske relacije so ohranjene). Pri večjih napetostih
pa se struktura kletke podre in delci se premešajo;
snov začne teči.

V odbojnih steklih se delež povrnjenega striga
še bolj netrivialno spreminja z apliciranim strigom
(glej sliko 10 desno). Pri majhnih apliciranih nape-
tostih delež povrnjenega striga narašča linearno, a
tu za elastičnost niso odgovorne deformacije kletk,
temveč raztezanje vezi v omrežju privlačnih sil med
delci. Nemonotono naraščanje na sliki 10 je še ne-
razloženo [22], a avtorji meritev [21] predlagajo, da
je vrh pri vmesnih napetostih posledica reformacije
privlačnih vezi med delci, ki se v tekočem vzorcu
stalno trgajo.

4.2 Dinamične heterogenosti
Pojav v kapljevinah blizu steklastega prehoda, ki ga
teorija MCT ne opiše, ampak je fenomenološko po-
memben, je t. i. dinamična heterogenost. Dejstvo,
prvo opaženo v simulacijah, nato pa še v eksperi-
mentih, je izrazita heterogenost v gibanju delcev [2].
Kot vidimo na sliki 11, se delci premikajo v gručah;
vsak delec se premakne le v sodelovanju z vsemi
delci v njegovi gruči. To je povezano s kletkami
sosedov, ki se morajo primerno razmakniti, da se
lahko delec premakne. Gibanje delcev je torej po-
gojeno z sodelovanjem večih delcev. Število delcev,
ki mora sodelovati v vsakem premiku, raste ko se
približujemo steklastemu prehodu in domene dina-
mične heterogenosti postanejo večje, uspešni premi-
ki pa redkejši in manjši v velikosti premikov.

Ko se približujemo steklastemu prehodu, makro-
skopska viskoznost η(ϕ) naše koloidne suspenzije
močno narašča. Kaj se pri tem dogaja z difuziv-
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Slika 11: Eksperimentalni dokaz dinamične hete-
rogenosti. (Levo) Konfokalna mikroskopska slika
koloidne suspenzije pri ϕ = 0.46. (Desno) Razli-
ka med sliko na levo in sliko 60 s kasneje; na črnih
mestih je bil delec prisoten na prvi sliki, na belih
mestih pa na kasnejši sliki. Skala je 10µm. Povze-
to po [2].

no časovno skalo gibanja delcev τD? Pričakovali
bi, da še vedno velja Stokes-Einstein-Sutherlandova
relacija (7), če le uporabimo mikroskopsko visko-
znost η(ϕ) namesto viskoznosti topila η0. A zara-
di dinamičnih heterogenosti to v bližini steklastega
prehoda ne velja več. Domene dinamičnih heteroge-
nosti imajo različne časovne skale za gibanje delcev,
časovne skale pa se tudi spreminjajo s časom [11].
Difuzija blizu steklastega prehoda in v steklih torej
poteka na povsem drugačen način kot v navadnih
tekočinah.

4.3 Staranje

Stekla so zaradi izjemno dolgih relaksacijskih časov
izrazito izven ravnovesja; snov preprosto nima ča-
sa, da bi se ekvilibrirala. A proces ekvilibracije se
še vedno dogaja, le zaključen ni dovolj hitro, da bi
govorili o ravnovesju. Vzorci se ”starajo” in posta-
jajo s časom vedno gostejši, ko se difundirajoči delci
razporedijo v vedno tesnejši sklad.

Staranje v steklastih vzorcih lahko študiramo ta-
ko, da opazujemo čas ∆t, ki ga delec v steklu potre-
buje za premik za neko }ksno razdaljo L2 [8], sicer
tako, da velja

〈∣
∣r(tage +∆t)− r(tage)

∣
∣
2
〉

= L2. (26)

Na sliki 12 vidimo meritve takšnih časov ∆t(tage).
Ključna opazka je v tem, da premiki za isto razda-
ljo s staranjem vzorca zahtevajo vedno daljše čase.
Torej je med delci s časom na voljo vedno manj pro-
stora za difuzivno gibanje in vedno težje je najti pot
za takšno gibanje delca.

Slika 12: Staranje koloidnega stekla za ϕ = 0.62.
Narisani so časi, potrebni za difuziven premik delca
za neko }ksno razdaljo (L2 = 0.05µm2 za kroge,
L2 = 0.1µm2 za trikotnike in L2 = 0.2µm2) za
kvadrate. Povzeto po [8].

4.4 Izzivi in simulacije
Pri študiju mikroskopskih dinamik in strukture ste-
kel bi se zdelo smiselno poseči po računalniških si-
mulacijskih metodah, kjer so mikroskopska stanja
delcev prosto dostopna za analizo. A simulacije ste-
klastih sistemov sistemov trčijo ob nepriročno dej-
stvo, da je karakteristična časovna skala za gibanje
delcev v bližini steklastega prehoda naraste za mno-
go velikostnih redov. To hitro izloči integracijo mo-
lekularne dinamike delcev, saj bi zahtevano število
korakov bilo preveliko tudi za najhitrejše moderne
računalnike [23]. Simulacijske študije steklastega
prehoda so bile torej v preteklosti omejene na zelo
majhne sisteme in na prvih 5 velikostnih redov v
naraščanju viskoznosti1 [24].

Vseeno poskušamo z računalniški orodji študirati
steklaste sisteme. Prvi način je študij povsem sin-
tetično (brez molekularne dinamike) konstruiranih
sistemov, ki v svoji strukturi posnemajo nekatere
lastnosti mikroskopske strukture stekel oz. snovi
blizu steklastega prehoda. Študije vključujejo npr.
model delcev z Lennard-Jonesovimi parskimi inte-
rakcijami, ki ga iz naključno izbranega stanja mi-
nimiziramo v nek blizu dostopen energijski mini-
mum. Na tako atermalno pridobljenih strukturah
nato izvajamo analizo. V zadnjih letih se je izkaza-
lo, da so povezave med stekli in takšnimi atermal-
nimi sistemi globoke, a ne povsem direktne, in da je
v atermalnem primeru bolj smiselno govoriti o }ziki
zagozditev (ang. jamming) [25].

V zadnjih desetletjih se je zvrstilo veliko dela na
področju problema uspešne ekvilibracije stekel v si-
mulacijah. Da bi pokrili reprezentativen del fazne-
ga prostora, ki bi omogočal primerjavo z labora-
torijskimi eksperimenti, kjer se vzorci ekvilibrirajo

1Podobno kot eksperimenti v koloidnih steklih. Izziv
predstavljajo predvsem simulacije molekularnih stekel.
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v časih sekund, minut in dni, je potrebno }zikalno
počasno raziskovanje faznega prostora v takšnih ne-
ergodičnih sistemih znatno pospešiti. Nabor tehnik
je širok [23], a v zadnjem času se je kot obetavna iz-
kazala različica Monte Carlo algoritma (ang. swap
Monte Carlo), ki standardne lokalne Metropolisov
premike modi}cira z dodatkom zamenjav med od-
daljenimi delci [24]. Takšen pristop se je s primerno
izbranimi potenciali in polidisperznostjo delcev iz-
kazal kot zelo obetaven, s pohitritvami ekvilibraci-
je do 10 velikostnih redov [26], kar odpira nadaljnje
možnosti za simulacijske študije pod pogoji, primer-
ljivimi z eksperimentalnimi.

5 Zaključek
Študij steklastega prehoda v molekularnih steklih
ima dolgo in bogato zgodovino, a globoko razume-
vanje njegove }zike ostaja izmuzljivo [27]. Študij
koloidnih stekel je k razumevanju dodal }zikalni po-
jav z mnogo vzporednicami, ki pa je bolj dostopen
za eksperimentalne študije, z možnostjo direktne-
ga vpogleda v mikroskopsko dogajanje. Tudi teori-
ja MCT je kljub zgoraj opisanem uspehu v razlagi
oblike F (q, t) še vedno zelo pomanjkljiva. Napove-
dana kritična temperatura Tg je višja od izmerjenih
oz. polnilno razmerje ϕMCT

g ≈ 0.52 je nižje od de-
janskega ϕg ≈ 0.58, kar opozarja na manjkajočo
}ziko v tem opisu, predvsem pojav termalno aktivi-
ranih procesov, ki steklasti prehod zakasnijo glede
na MCT napoved [28]. Obstajajo in nastajajo tudi
druge teorija steklastega prehoda, npr. teorija na-
ključnih faznih prehodov (ang. random }rst-order
transition theory), ki nadgrajuje MCT in inkorpo-
rira druge teoretične pristope [1].

Poleg tega tudi analogija med koloidnimi in mo-
lekularnimi stekli ni popolna. Samo kot en primer
razlike, v eksperimentih s koloidnimi stekli pripra-
vijo ločene vzorce z različnimi polnilnimi razmerji
(številskimi gostotami), jih pretresajo in pustijo, da
kristalizirajo ali strdijo v steklasto stanje [7, 6, 29,
30]. Kontrolni parameter ϕ se ne spreminja s ča-
som, kot se temperatura znižuje pri molekularnem
steklastem prehodu – v takih eksperimentih nima-
mo vsiljene časovne skale, kot je hitrost ohlajanja
(ang. cooling rate) za molekularna stekla. Klasič-
ni eksperimenti steklastega prehoda za molekularna
stekla torej niso dostopni v koloidnih sistemih, kar
otežuje primerjavo.

Jasno je torej, da je na področju steklastega pre-
hoda odprtih še mnogo vprašanj, tako eksperimen-
talnih kot teoretičnih. In če je preteklost indikator,
bo študij koloidnih sistemov še v naprej koristen
analog, ki bo tudi v nadaljnje ponujal bogat vpo-
gled v univerzalne lastnosti steklastega prehoda in
steklastih materialov.
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