Koloidna stekla

Martin Sifrar

Povzetek

Kljub industrijski pomembnosti stekel ostaja steklasti prehod brez globoke fizikalne razlage. Uporabno
analogijo predstavljajo sistemi koloidnih suspenzij, ki prav izkazujejo steklast prehod, t. i. koloidna
stekla. Ti sistemi so zaradi mezoskopske skale gradnikov eksperimentalno dostopnejsi in preko mikrosko-
pije in sipalnih eksperimentov omogocajo direkten vpogled v mikroskopsko strukturo koloidne suspenzije
blizu steklastega prehoda. V seminarju si pogledamo fenomenologijo koloidnega steklastega prehoda in
relevantne eksperimentalne metode. Na kratko predstavimo tudi osnovne koncepte teorije MCT (ang.
mode-coupling theory), ki ponuja nesporno impresivne napovedi eksperimentalnih meritev. Pri tem izpo-
stavimo nedavni uspeh MCT teorije, kjer so izracuni v okviru teorije napovedali, eksperimentalne meritve
pa nato potrdile presihajo¢ (ang. reentrant) fazni prehod steklo-kapljevina-steklo, ko koloidni suspenziji
dodajamo ne-adsorbirajo¢ polimer in s tem vzbudimo privla¢no silo med delci. Fenomenolosko si pogle-
damo tudi rezultate reoloskih meritev in omenimo pojav dinami¢nih heterogenosti in staranja steklastih
materialov. Nekaj kratkega povemo tudi o izzivih, ki jih steklasti sistemi predstavljajo za simulacije, in

o potencialnih resitvah, ki bi omogocale simulacije v pogojih, primerljivih z eksperimentalnimi.

1 Uvod

1.1 Steklasti prehod

V fiziki kondenzirane snovi pojem stekla zajema si-
rok nabor snovi, ki so po lastnostih podobne tako
kapljevinski kot kristalni fazi. Steklasta faza nasto-
pi, ko tekocino shladimo na temperaturo pod tem-
peraturo steklastega prehoda T,. Pri takem ohla-
janju viskoznost snovi n naraste do tocke, da snov
postane trdna. Ohlajanje mora biti dovolj hitro,
da se snov izogne kristalizaciji. Rast kristala zahte-
va preckanje energijske bariere; za steklasti prehod
mora biti ohlajanje hitro glede na ¢asovno skalo nu-
kleacije in rasti kristala. Steklasti prehod torej ni
termodinamski fazni prehod [}, temve¢ je kineticen
pojav.

Tradicionalno in aplikativno so pomembni mate-
riali (npr. SiOs stekla), ki jih iz kapljevinaste tali-
ne ohlajamo s hitrostmi ~ 1072 Kis~!. Z uporabo
modernejsih eksperimentalnih tehnik in v simula-
cijah pa je razvidno, da hitrejSe hlajenje povzroci
prehod v steklasto fazo tudi v snoveh, kjer ga sicer
ne bi priakovali, npr. v kovinskih zlitinah [3] in
celo v simulacijah kapljevinastega mono-atomskega
plina [4].

Temperaturo prehoda T, definiramo nekoliko ar-
bitrarno kot temperaturo, pri kateri viskoznost na-
raste do mere, da snov tece le na ¢asovnih skalah,
ki niso eksperimentalno dosegljive. Pogosto je meja
viskoznosti nekaj 10'5-kratna vrednost viskoznosti
vode, saj so visje viskoznosti tezko merljive. Na ar-
bitrarnost takih definicij kaze npr. primer bitumna
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Slika 1: Porast viskoznosti koloidne suspenzije,
ko se priblizujemo polnilnemu razmerju steklastega
prehoda ¢, ~ 0.58, ki ga dobro opise Doolittlova
enacba (mé; Povzeto po [2].

(ang. pitch), ki je pri sobni temperaturi izkustve-
no lomljiva trdnina. Na casovni skali mnogih let
pa vseeno tece in se obnasa kot viskozna kapljevina
(pitch-drop eksperiment [B]).

1.2 Koloidni steklasti prehod

Koloidi so razred vec-faznih snovi, sestavljenih iz
delcev velikosti 10 nm — 10 pm. Med koloide spada-
jo npr. emulzije (kapljice v nemesljivi kapljevini),
aerosoli (kapljice v plinu), pene (plinski mehurcki
v kapljevinskem oz. trdnem mediju). Poleg tega,
da so koloidi razsirjeni v bioloskem svetu in indu-
strijskih aplikacijah, so zanimivi tudi kot modelski
sistemi, ki so zaradi mezoskopskih velikosti delcev
bolj dostopni za eksperimentalno preucevanje v la-
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Slika 2: Maxwellov model viskoelasticne snovi,
predstavljen z kombinacijo vzmeti z elasti¢no kon-
stanto G in dusilnika z viskoznostjo 7.

boratoriju [E]

Koloidne suspenzije trdninskih kroglic v kaplje-
vini izkazujejo steklasti prehod, ki pa ni funkcija
temperature, temvec polnilnega razmerja

_4r(a/2’N VN

O=3 Ty v

pri ¢emer je a premer kroglic, V(1) je volumen ene
kroglice, N/V pa njihova Stevilska gostota. To ko-
loidna stekla locuje od molekularnih stekel in njiho-
vega steklastega prehoda, ki je funkcija temperatu-
re. Izvorno namenjena za opis molekularnih stekel,
Doolittlova enacba dobro opise porast viskoznosti v
koloidnih steklih

no_ D¢
7o —Cexp{¢m_¢},

pri Gemer so C' = 1.2, D = 1.65 in ¢y, = 0.638 [2].
Na sliki m vidimo znacilno narascanje viskoznosti
koloidne suspenzije, ko se priblizujemo steklastemu
prehodu. V molekularnih steklih opazimo podobno
obnasanje, a z meritvami, ki namesto stirih obsegajo
kar dvanajst velikostnih redov porasta v viskozno-
sti [l

V tem seminarju bomo obravnavali steklasti pre-
hod v koloidnih sistemih trdninskih kroglic v kaplje-
vinskem mediju. Zanimanje za steklastega prehod
sega do 80-ih letih prejsnjega stoletja [B, B?in je mo-
tivirano s podobnostmi med koloidnimi in moleku-
larnimi stekli [§]; zato bomo obnaSanja na mestih,
kjer je primerno, povezali s steklastim prehodom v
molekularnih steklih.

(1)

1.3 Viskoelasti¢nost in relaksacija

V nadaljevanju bomo namesto viskoznosti bolj na-
ravno govorili o relaksacijskem c¢asu 7. Dolgi rela-
ksacijski casi 7 ustrezajo snovi z veliko viskoznostjo
7, kar najlazje vidimo na preprostem Maxwellovem
modelu viskoelasti¢ne snovi. Elasti¢ni odziv take
snovi na strizno napetost p je strizna deformacija

e = p/G, kjer je G strizni elastiéni modul. Taksne-
mu Hookovemu odzivu (vzmet) dodamo Se viskozni
odziv (dusilnik), kot je shemati¢no prikazano na sli-
ki Pl. Tedaj je skupni raztezek vzmeti in dusilnika
eE=¢cgtey

+2 2)

saj je e¢ = p/G in €, = p/n za skupno nape-
tost v snovi p = pg + py- Ce viskoelasti¢ni medij,
ki ga opisuje (B), strizno raztegnemo za oy, se bo
napetost v materialu eksponentno relaksirala kot
p(t) = Geo - e~/ 7 relaksacijskim ¢asom

T=1/G. (3)
Relaksacijski ¢as v tem smislu doloca ¢asovno ska-
lo mikroskopskih relaksacij gradnikov in je kljucni
parameter za opis steklastega prehoda.

2 Fenomenologija

Obravnavali bomo koloidne suspenzije trdih sferic-
nih delcev (ang. hard-spheres) premera a, z odboj-
nim meddelénim potencialom

r<a/2,
: (4)

sicer.

Ker se kineti¢na energija pri trkih ohranja, je entro-

pijski ¢len edini netrivialen prispevek k prosti ener-

giji I = —TS. Particijska funkcija vsebuje le konfi-

guracijski del (koliko prostora je sferam na voljo) in

3

je odvisna le od polnilnega razmerja ¢ = w.

Polnilno razmerje je torej edini kontrolni parameter

za fazno obnasanje taksnih trdih sfer.
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Slika 3: Fazni diagram trdih sfer. Povzeto po [E]

Fazni diagram za koloidno suspenzijo trdih sfer
vidimo na sliki B. Pri majhnih polnilnih razmerjih
pod ¢ip1 = 0.494 se koloidna suspenzija obnasa kot
kapljevina. Nad ¢ip1 opazimo, da deli vzorca zac-
nejo prehajati v ravnovesno kristalno fazo. Alter-
nativno celoten vzorec vstopi v neravnovesno sta-
nje podhlajene kapljevine, ki nad mejno vrednostjo
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Slika 4: Izmerjene ¢asovne odvisnosti odmika (r?),
za polnilna razmerja ¢ = 0 (skrajno levo) in ¢ €
[0.466,0.583] (od leve proti desni). Delci s pre-
merom a = 0.2 ym; ¢as v_enotah difuzivnega casa
7p ~ 0.02s. Povzeto po [L0].

¢q4 =~ 0.58 zacne prehajati v steklasto fazo. Stekla-
sta faza je prisotna vse od ¢, do zgornje meje na-
kljuénega polnjenja ¢rcp = 0.64 [9]. Steklasta faza
je torej neravnovesno stanje, prisotno za 0.58 < ¢ <
0.64 [2]. Nad ¢rcp je mogoca zgolj Se kristalna faza,
do teoreti¢ne meje ¢pucp = 7/3v2 ~ 0.74.

2.1 Mikroskopske relaksacije

A priori éasovno skalo v koloidnih steklih doloca
Brownovo gibanje delcev, za katerega vemo, da pov-
precni (za vse delce) kvadrat odmika raste linearno

(r?) = ([r(®) = r(0)]*) = 6Dx. (5)
Casovna skala je tedaj difuzivni ¢as 7p, ki ga ra-

zumemo kot ¢as, v katerem delec difundira za en
premer stran od zacetnega polozaja

(6)

Slika 5: Trajektorija 1.18 us delca v koloidni suspen-
ziji blizu koloidnega steklastega prehoda (¢ = 0.56).
Delec se ~ 500s zadrzuje v eni kletki, nato pa pre-
sko¢i v drugo kletko. Povzeto po [L1].

pri cemer je difuzijski koeficient D podan z Stokes-
Einstein-Sutherlandovo relacijo

D_ kT )

~ 6mmpa’

pri neki termicni energiji k7" in viskoznosti topila 7.
Znacilna velikost 7p v eksperimentih je ~ 10ms,
kar je kar priblizno 103-krat daljsi ¢as od karakte-
risti¢nih difuzijskih ¢asov v kapljevinah oz. talinah
molekularnih stekel.

2.2 Ucdinek kletke

Za prosto difundirajoce delce bi pri¢akovali linearno
narascanje kvadrata odmika s ¢asom. V steklasti
koloidni suspenziji pa difuzijo delcev omejuje pri-
sotnost njihovih tesnih sosedov — okolica sosednjih
delcev deluje kot “kletka” (ang. cage), ki gibanje
delca moc¢no omeji. Na sliki f vidimo ¢asovna na-
raséanje (r?) blizu koloidnega steklastega prehoda.
Pri majhnih c¢asih, ko delec Se ne zadane mej oko-
liske kletke, je gibanje difuzijsko (r?) o t. Kasne-
je pri casih t > 7p, pa je opazno izrazito zastaja-
nje, povzrocene s kletkami okoliskih delcev. Pri ve-
¢jih ¢asih delci vseeno pobegnejo iz kletk; obnasanje
pa lahko karakteriziramo z dolgo-¢asovno difuzijsko
konstanto

; (8)

ki je znatno manjsa od tiste za prosto difuzijo (iz-
raz (H)) Taksna anomalna difuzija je znacilna za
podhlajeno kapljevino, ko se priblizujemo steklaste-
mu prehodu pri ¢4. Z direktim sledenjem delcem
pod konfokalnim mikroskopom [11], vidimo, da se
delci res zadrzujejo znotraj kletk, po dolgem casu
pa med njimi preskakujejo (trajektorija na sliki f).

2.3 Dinamic¢ni strukturni faktor

Mikroskopske pozicije vseh N delcev v kapljevini
ali steklu lahko predstavimo z gostoto oblike

N
plr,t) = 6(r—x;(t)),

Jj=1

9)

ki imajo za Fourierove komponente p(q,t) gostotne
vale

N
p(q7 t) - / p(I‘, t)eiq.r dI‘ = Z eiqu (t)’ (10)
Jj=1

V sipalnih eksperimentih pogosto merimo t. i. sta-
tiéni strukturni faktor

(11)
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pri Gemer (o) razumemo kot termodinamsko pov-
precje. V kapljevinasti fazi delci nimajo fiksnih do-
lo¢enih pozicij, a v izotropnem strukturnem faktor-
ju S (]q|) vseeno vidimo (glej sliko f levo) vrh pri
polnilno razmerje.

Staticni strukturni faktor za steklasto fazo koloi-
dne suspenzije je zelo podoben tistemu za kapljevi-
nasto fazo. Za ve¢ informacij o steklasti fazi lahko
staticni strukturni faktor posplosimo na ¢asovno-
odvisni strukturni faktor, merjen preko vmesne si-
palne funkcije oz. ISF (ang. intermediate scattering
function)

Flat) =y {p@0pan)  (12)
ki meri ¢asovno avtokorelacijo posameznih gosto-
tnih valov, ki priticejo valovnim vektorjem q. V
kapljevini, kjer delci difundirajo en mimo druge-
ga, postane po nekem kratkem casu (nekajkrat 7p)
gostota p(r,t) povsem nekorelirana z zacetno go-
stoto p(r,0). Zato vidimo v preprostih kapljevi-
nah znacilni hitri eksponentni razpad, t. i. f-
relaksacijo [12] v ¢asovni odvisnosti F'(q,t) za nek
fiksen q. Ce bi bili delci v snovi negibni (npr. v
kristalu), bi ne opazili relaksacije v ISF, temve¢ bi
za vse Case veljalo F(q,t) = S(q). Blizu stekla-
stega prehoda, torej za ¢ < ¢4, se zaradi ucinka
kletk zacne pri ¢asih t > 7p oblikovati rahel pla-
to oz. prevoj. Pri majhnih casih se delci gibljejo
znotraj kletk svojih sosedov, kar ustreza t. i. (-
relaksaciji. Plato v relaksaciji ISF ustreza meji tega
gibanja znotraj kletk, nadaljnja S-relaksacija pa po-
begu delcev iz kletk. Ta sekundarna a-relaksacija
postaja vedno pocasnejsa (plato pa vedno daljsi),
ko se priblizujemo steklastemu prehodu. Vse do-
kler je gibanje delcev ergodicno, je snov kapljevi-
na; ko postane ne-ergodicno za vse eksperimental-
no dostopne Case, govorimo o nastopu steklaste fa-
ze. Vrednost ISF pri najvecjih eksperimentalnih ¢a-
sih f(q) = lim;o F(q,t) je t. i. parameter ne-
ergodicnosti in je pogosto vzet kot ureditveni para-
meter za steklasti prehod [[12], ki je enak f(q) =0
v kapljevinastem in f(q) > 0 v trdninskem stanju.

3 Teorija MCT

Pomembna teorija steklastega prehoda v koloidnih
kot tudi molekularnih steklih je t. i. MCT teorija
(ang. mode-coupling theory). Podrobna izpeljava bi
bila predolga in preve¢ formalisticna, zato oriSemo
le nekaj osnovnih konceptov teorije, nato pa disku-
tiramo napovedi in ujemanje z eksperimentom.

Iz klasicne mehanike vemo, da je se v sistemu s
Hamiltonianom # poljubna koli¢ina A(t) ¢asovno

$=0.450
— $=0480
3 $=0.500
=056 | =
$=0.530 ]
=
A T
B,
o
A
R e e
\/\
L
o 10 20 30

Slika 6: (Levo) Stati¢ni strukturni faktor za sis-
tem trdih sfer, izracunan z Percus-Yevickovim pri-
blizkom. (Desno) Shematiéni prikaz dinami¢nega
strukturnega faktorja pri prehodi iz kapljevine v
steklo. Povzeto po [12].

razvija kot

A(t) = {A(t), 1}, (13)

pri Cemer je {e, @} Poissonov oklepaj, ali enakovre-
dno Louvillov operator [13] £ : A — 1{A,H}, ta-
ko da je unitarni ¢asovni razvoj eksplicitno zapisan
kot A(t) = et A(0). Tak ¢asovni razvoj je for-
malno tocen, a ne preve¢ uporaben za analizo. V
MCT teoriji se posluzimo Mori-Zwanzig projekcij-
skega formalizma [14], kjer gledamo operator

P:X(t) ~ (A,X(1)(A,A) A, (14)
pri ¢emer je (e, ) poseben skalarni produkt, defini-
ran kot termodinamsko povpreéje (A, B) = (A*B).
Ce sta A in B vektorski koli¢ini, je (A,B) matri-
ka. Operator P deluje kot projektor na ¢asovno-
konstantno koli¢ino A = A(0) in z njim lahko uni-
tarni ¢asovni razvoj razdelimo na dva dela. Na del,
ki lezi v sliki projektorja (pocasni del) in na del,
ki lezi v jedru projektorja (hitri, fluktuacijski del).
Ce uporabimo 1 = P 4 1 — P na enacbi unitarnega
razvoja (L)

dA(t) .
5 = [P +1—PJiLA(t)

= PiLA(t) + [L—PJiLA(t),
N—_——

hitri (luktuacijski) del

(15)
pocasni del
nam kratek rac¢un (glej [[13, str. 6]) pokaze, da za

Casovni razvoj A(t) velja integro-diferencialna enad-

ba

%Et) = AW —/O M(s) A(t — s)ds +f(t),

pocasni del

hitri (fluktuacijski) del
(16)
pri ¢emer je iQ = iPL = (A,il)(A,A)" t. i
frekvenéna matrika, ki izlo¢i del % , ki ostane v
pocasnem delu prostora. Hitro oz. fluktuacijski del



dinamike zene ¢len f(¢), ki ga razumemo kot neka-
ksno silo, definiran pa je kot
f(t) := P+ P LILA(L),

PJ_ 2:1—737 (17)

kar razumemo kot projekcijo % v prostor hitre
komponente in unitarni ¢asovni razvoj v tem pod-
prostoru. Pod integralom v ([L7) nastopa Se spomin-
ska funkcija (ang. memory function). definirana kot
M(t) := (f,£(t))(A,A)"!. Enacba (E) je eksaktna
in velja za povsem poljubno koli¢ino A(t). Dejansko
nas bo zanimala vektorska kolicina

A0 = (i)

Se bolj konkretno pa njena avtokorelacijska matrika
C(t) := (A"(0)A(1)),

ki v komponentah vsebuje C1; = N - F'(q,t) in od-
vod Ci5 = N - W. Tudi korelacijska matrika
C(¢) je koli¢ina in zanjo velja splogna oblika ¢asov-
nega razvoja ([L7). A ¢e enacbo ([L7) z leve pomnoZi-
mo z A* in vzamemo termodinamsko povpredje (e)
obeh strani, bo ¢len fluktuacijske sile f(¢) odpadel,
saj zivi v jedru projektorja P in velja (A, f(¢)) = 0.
Torej se korelacijska matrika ¢asovno razvija kot

(18)

(A, A(t) = (19)

dC(t
e = iQC(t / M(s)C(t—s)ds.  (20)
dt
V tej matriki je vsebovan Cij3 = N - %, in ¢e

porac¢unamo potrebne matri¢ne elemente 2 in M(t)
(glej [L3]), dobimo integro-diferencialno enacbo

a2
m t dF(q,t —s)
" NkT J, <R‘qRq(s)> a9
(21)

pri cemer je m masa posameznega delca; v inte-
grandu pa je prisotna avtokorelacija R4, ki je izje-
mno kompleksna koli¢ina, ki odraza mikroskopske

fluktuacije sistema
1 (d%p(q,t kT
— p(2 ) + p(a,t) ) .
iq dt mS(q)

Vidimo torej, da nam MCT da integro-diferencialno
enacbo drugega reda za F(q,t). Splosna obli-
ka (@) je Se vedno neprimerna za kakrSenkoli iz-
racun, saj vsebuje avtokorelacijo Rq. Na tej tocki
so potrebni nekateri priblizki, ki poskusajo oceniti

Ry =

(22)

<R_qRq(s)> s tem, da Rq projicirajo v produktno

bazo {p(q;,t)p(q;,t)}ij. Za tehnicen postopek in

Shematski MCT (w=1)
F(t) + w?F(t) = — [aF(s)2F(t — s)ds

101 102 103

cast

100

Slika 7: Resitve shematskega MCT modela. Vidi-
mo, da ima oblika resitve kvalitativen preskok pri
mejni vrednosti a = a4 = 4, za a > a4 se resitev ne
relaksira k 0, temve¢ h kon¢ni vrednosti.

ve¢ motivacije glej [13, str. 10], tu pa navedemo le
konéni rezultat

d?F(q,t -
(q )+ /Kq, th S)dS,

de?

2 . kT
- mS(q)”
smo jo dobili s priblizkom za (R_qR4(s)) pa je obli-
ke

K(q,s) :=

pri ¢emer je w Spominska funkcija, ki

NET <R_qR (s )>

16(?:? /‘Vq Kkl *F (k, ) F(Jk — g, s) dk,

(23)

Yok = ||{(ql ) -c(k) +q- (a—k) - clla—k|) .
(24)

pri ¢emer je py = ¢/ V) stevilska gostota delcev.
V izrazu nastopa direktna korelacijska funkcija ¢(q),
ki jo lahko izrazimo z Ornstein-Zernike enacbo v

o (1= sta)
3.1 Shematski MCT

Teorija MCT nam preko integro-diferencialne enac-
be drugega reda (@ napoveduje ¢asovno obnasanje
F(q,t). Kot zacetni pogoj enacba potrebuje staticni
strukturni faktor S(q). Oblika diferencialne enacbe
je F(q,t) + w?F(q,t) = —T'{F(q,t)}, kar lahko ra-
zumemo kot bolj splosno enacbo dusenega nihanja,
kjer je dusenje podano z nekim funkcionalom.
Analizo in razumevanje si poenostavimo, Ce za
trenutek povsem pozabimo na g-odvisnost v ISF,

Fourierovi domeni ¢(q) =



Slika 8: Koloidi z dodatkom ne-adsorbirajocega po-
limera. Ce se dva koloida priblizata (glej delca A
in B), je med njima ustvarjen prepovedan oz. de-
plecijski volumen, v katerega se polimeri ne morejo
premakniti. Povzeto po [ﬁj

ter smatramo t. i. shematski MCT model [@],

dQF(t) 2 ! (shem) dF(t — S)

S e F(t)——/o Koo () U= g
- (29)

kjer uporabimo KP™)(s) := aF(s)?. Ce bi na-

mesto te_oblike uporabili Dirac-delta funkcijo, bi
enacba (R5) dejansko bila enacba duSenega niha-
la. Tako pa doda mero nelinearnosti, zaradi ka-
tere resitve F'(t) izkazujejo oster kvalitativen pre-
hod, ko parameter a precka vrednost a, = 4. Ce
je a < ag, relaksira F(t) proti 0 relativno prepro-
sto (B-relaksacija). A ko se priblizamo vrednosti
ag = 4, se izoblikuje plato. Za vse a > a4 je plato
zelo dolg, funkcija se ve¢ ne relaksira k vrednosti
0. Zelo pomembno je, da tak model napove nastop
ne-ergodi¢nega rezima, torej steklasti prehod.
Shemati¢ni MCT opise najbolj pomembna obna-
Sanja, ki smo si jih od modela zZeleli. Mnoge napo-
vedi so ohranjene tudi ko resujemo bolj polno razli-
¢ico modela, ki vsebuje odvisnosti od q [@] Dejan-
ski postopek racunov za napoved steklastega pre-
hoda vkljucuje eksperimentalno meritev zacetnega
pogoja S(q) za razlicne gostote py za koloidna ste-
kla_oz. temperature za molekularna stekla. Na sli-
ki B smo Ze videli, da se stati¢ni strukturni faktor
nekoliko spremeni z vecanjem polnilnega razmerja
¢ = V(l)p¢, te razlike pa se skozi nelinearno integro-
diferencialne enacbo (E) preslikajo na ¢asovno ob-
nasanje F'(q,t). Iz tega teorija napove tudi potenc¢ni
zakon za relaksacijski ¢as 7 o< (T'— T,)~" za mo-
lekularna stekla oz. 7 o (¢4 — ¢)~7, ki dobro opi-
suje simulacije in eksperimente, dokler nismo pre-
blizu steklastega prehoda [B, @] Polna g-odvisna
MCT napove tudi ¢asovno odvisnost dolgo-casovne
a-relaksacije, ki je priblizno F(q,t) e(=t/m)”,
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Slika 9: Meritve casovnega poteka ISF za kolo-
idno steklo z dodatkom privlacne sile med koloi-
di. Vzorec A je suspenzija trdih sfer brez poli-
mera, naslednji vzorci pa vsebujejo postopno vec
ne-adsorbirajocega polimera, ki povzroc¢i entropij-
ski deplecijski odboj med koloidi. Povzeto po [@]

V molekularnih steklih so potrjene tudi Se bolj
konkretne in toéne napovedi za ¢asovni potek hi-
tre [-relaksacije [@], v koloidnih steklih pa je bolj
atraktivna napoved faznih prehodov, o kateri bomo
govorili v nadaljevanju.

3.2 Dodatek deplecijskega odboja

Pomemben uspeh MCT teorije je vezan na napoved
oblike faznih prehodov v koloidih z dodatkom pri-
vlacne sile med delci. Privlacna sila je posledica te-
ga, da koloidni suspenziji dodamo ne-adsorbirajoc
polimer. Ce se koloidna delca v taksni suspenziji
dovolj zblizata, bo med njima ustvarjen deplecijski
volumen (glej sliko g), ki zmanjSa polimerom dosto-
pen volumen in zniza entropijo sistema. Med delci
torej deluje privlacna sila zelo kratkega dosega.
Okoli leta 1999 je ve¢ skupin [@, @ | z upora-
bo MCT teorije napovedalo presihajo¢ (ang. reen-
trant) steklasti prehod, ko trdim sferam postopoma
dodajamo taksno privlac¢no silo. Teoreti¢na napo-
ved se je izkazala za uspesno v sledec¢ih letih, ko
je bila eksperimentalno potrjena. Na sliki § vidimo
izmerjene poteke ISF za vzorce z razlicnimi koncen-
tracijami ne-adsorbirajocega polimera [@] Vidimo
izrazito ne-monotono obnasanje F(q,t), ko ve¢amo
koncentracijo polimera, od ni¢ polimera za vzorec A
do najvecje koncentracije za vzorec H. Vsi vzorci so
pripravljeni s polnilnim razmerjem ¢ = 0.6 in vzor-
ca A in B z najmanj polimera, ohranita obnasanje
trdih sfer in tvorita odbojno steklo, ki ga prepozna-
mo v ne-ergodiénem platoju F'(q,t). Z dodatkom
vec polimera (vzorci C, D in E) deplecijska privlac-
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Slika 10: Reoloska meritev za vzorec odbojnega ste-
kla (levo) in vzorec privlaénega stekla (desno). Na
vzorec 1000s delujemo z strizno napetostjo o, na-
to pa napetost umaknemo. Prikazano je povrnjen
delez striga nazaj do nevtralnega stanja v = 0. Pol-
ni krogci prikazujejo celoten povrnjen delez striga
(1000's po umiku napetosti), prazni krogci pa hitro
povrnjen delez (0.1s po umiku). Povzeto po [21].

na sila povzroci, da se koloidna suspenzija "stali”
in postane kapljevinasta, s samo-difuzijo delcev en-
mimo-drugega in hitro in popolno relaksacijo. Ti
vzorci C, D in E so kapljevinasti, kar omogoci, da
kristalizirajo. Posebej zanimivo pa je, da dodatek
Se vec¢ polimera kapljevino zopet “odtali” in za vzo-
rec F, Se bolj pa za vzorca G in H opazimo v obliki
F(q,t) zelo pocasno relaksacijo; vzorec je na celo-
tni eksperimentalni skali ne-ergodicen. To je t. i.
privla¢no steklo (ang. attractive glass), ki ga od od-
bojnega stekla (ang. repulsive glass) lo¢i struktura
delcev, povezanih v toga omrezja, ki jih oblikuje-
jo privlacne sile med delci. Togost teh omrezij je
razvidna iz tega, kako Sibka je kratko-¢asovna (-
relaksacija v potekih ISF za vzorce F, G in H (na
sliki g spodaj levo vidimo, da se relaksira le ~ 1%
amplitude).

4 Omnkraj MCT

4.1 Reoloske lastnosti

Koloidna stekla smo si predstavljali kot snov, kjer je
relaksacijski ¢as izjemno dolg (nad eksperimentalno
¢asovno skalo). Na podlagi takSne ne-ergodi¢nosti
smo koloidna stekla vzelo za primer trdne faze. Ali
pa so koloidna stekla zares trdna? Bolj neposreden
test za to lahko opravimo z reoloskimi meritvami.
Ce si koloidna stekla predstavljamo kot visko-
elasti¢ni material, imamo v splosnem kompleksni
strizni modul G*(w) = G'(w) + iG"(w), ki deluje
kot prenosna funkeija v frekvenéni domeni p(w) =
G(w)e(w). Realni del G’ je t. i. storage modulus,
ki doloca elastiéni del odziva, imaginarni del G”
(ang. loss modulus) pa viskozni oz. tekoéinski del
odziva, ko se snov ne-elasti¢no deformira. Komple-

ksni strizni modul G*(w) merimo preko aplikacije
oscilirajoe strizne napetosti e(t) = gq cos(wt). Ce
je G' > G”, je vecinski del odziva snovi elastien
in snov lahko oklicemo za trdnino (ne kapljevino).
Taksni reoloski eksperimenti z vzorci privlacnih in
odbojnih stekel [21, str. 655] potrdijo, da obnasa-
nje koloidnih stekel v rezimu linearnega odziva, ko
je strig manjsi od 2% indicira pretezno trdno snov,
saj za vse frekvence w € [0.01s71,100s~!] modul
G’ vedji od modula izgub (G’ &~ 10G”). Pomenlji-
va je tudi primerjava med privla¢nim in odbojnim
tipom stekla; odbojno steklo ima priblizno 8—krat
vedji modul G'. Odbojna stekla so torej znatno bolj
toga, zahvaljujo¢ omrezjem odbojnih sil med delci.

Morda Se bolj zanimiv tip reoloskega eksperimen-
ta je povrnitev striga po aplikaciji konstantne na-
petosti [21]. Na sliki [LJ levo vidimo, da delez povr-
njenega striga pri majhnih strigih linearno narasca
z apliciranim strigom. Za majhne napetosti si lah-
ko predstavljamo reverzibilne deformacije kletk, pri
katerih je ohranjena topoloska struktura delcev (so-
sedske relacije so ohranjene). Pri vecjih napetostih
pa se struktura kletke podre in delci se premesajo;
snov zacne teci.

V odbojnih steklih se delez povrnjenega striga
Se bolj netrivialno spreminja z apliciranim strigom
(glej sliko [LQ desno). Pri majhnih apliciranih nape-
tostih delez povrnjenega striga narasca linearno, a
tu za elasticnost niso odgovorne deformacije kletk,
temvec raztezanje vezi v omrezju privla¢nih sil med
delci. Nemonotono narasc¢anje na sliki [L( je Se ne-
razlozeno [22], a avtorji meritev [21] predlagajo, da
je vrh pri vmesnih napetostih posledica reformacije
privlacénih vezi med delci, ki se v teko¢em vzorcu
stalno trgajo.

4.2 Dinamicne heterogenosti

Pojav v kapljevinah blizu steklastega prehoda, ki ga
teorija MCT ne opise, ampak je fenomenolosko po-
memben, je t. i. dinamic¢na heterogenost. Dejstvo,
prvo opazeno v simulacijah, nato pa Se v eksperi-
mentih, je izrazita heterogenost v gibanju delcev [2].
Kot vidimo na sliki [L1], se delci premikajo v grucah;
vsak delec se premakne le v sodelovanju z vsemi
delci v njegovi gruci. To je povezano s kletkami
sosedov, ki se morajo primerno razmakniti, da se
lahko delec premakne. Gibanje delcev je torej po-
gojeno z sodelovanjem vecih delcev. Stevilo delcev,
ki mora sodelovati v vsakem premiku, raste ko se
priblizujemo steklastemu prehodu in domene dina-
micne heterogenosti postanejo vecje, uspesni premi-
ki pa redkejsi in manjsi v velikosti premikov.

Ko se priblizujemo steklastemu prehodu, makro-
skopska viskoznost 7(¢) nase koloidne suspenzije
moc¢no narasca. Kaj se pri tem dogaja z difuziv-



Slika 11: Eksperimentalni dokaz dinamicne hete-

rogenosti. (Levo) Konfokalna mikroskopska slika
koloidne suspenzije pri ¢ = 0.46. (Desno) Razli-
ka med sliko na levo in sliko 60s kasneje; na ¢rnih
mestih je bil delec prisoten na prvi sliki, na belih
mestih pa na kasnejsi sliki. Skala je 10 ym. Povze-
to po [E?

no casovno skalo gibanja delcev 7p? Pricakovali
bi, da Se vedno velja Stokes-Einstein-Sutherlandova
relacija ([]), ¢e le uporabimo mikroskopsko visko-
znost 1(¢) namesto viskoznosti topila 7. A zara-
di dinamic¢nih heterogenosti to v blizini steklastega
prehoda ne velja ve¢. Domene dinamicnih heteroge-
nosti imajo razli¢ne ¢asovne skale za gibanje delcev,
casovne skale pa se tudi spreminjajo s ¢asom [11].
Difuzija blizu steklastega prehoda in v steklih torej
poteka na povsem drugacen nacin kot v navadnih
tekocinah.

4.3 Staranje

Stekla so zaradi izjemno dolgih relaksacijskih ¢asov
izrazito izven ravnovesja; snov preprosto nima ca-
sa, da bi se ekvilibrirala. A proces ekvilibracije se
Se vedno dogaja, le zakljuc¢en ni dovolj hitro, da bi
govorili o ravnovesju. Vzorci se "starajo” in posta-
jajo s casom vedno gostejsi, ko se difundirajoci delci
razporedijo v vedno tesnejsi sklad.

Staranje v steklastih vzorcih lahko Studiramo ta-
ko, da opazujemo ¢as At, ki ga delec v steklu potre-
buje za premik za neko fiksno razdaljo L? [8], sicer
tako, da velja

<|r(tage +At) - r(tage)|2> — 1% (26)

Na sliki @ vidimo meritve taksnih ¢asov At(tage).
Klju¢na opazka je v tem, da premiki za isto razda-
ljo s staranjem vzorca zahtevajo vedno daljSe case.
Torej je med delci s casom na voljo vedno manj pro-
stora za difuzivno gibanje in vedno tezje je najti pot
za taksno gibanje delca.
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Slika 12: Staranje koloidnega stekla za ¢ = 0.62.
Narisani so ¢asi, potrebni za difuziven premik delca
za neko fiksno razdaljo (L? = 0.05um? za kroge,
L? = 0.1pum? za trikotnike in L? = 0.2 um?) za
kvadrate. Povzeto po [§].

4.4 Izzivi in simulacije

Pri studiju mikroskopskih dinamik in strukture ste-
kel bi se zdelo smiselno poseci po racunalniskih si-
mulacijskih metodah, kjer so mikroskopska stanja
delcev prosto dostopna za analizo. A simulacije ste-
klastih sistemov sistemov trc¢ijo ob nepriro¢no dej-
stvo, da je karakteristicna ¢asovna skala za gibanje
delcev v blizini steklastega prehoda naraste za mno-
go velikostnih redov. To hitro izlo¢i integracijo mo-
lekularne dinamike delcev, saj bi zahtevano stevilo
korakov bilo preveliko tudi za najhitrejSe moderne
racunalnike [@] Simulacijske $tudije steklastega
prehoda so bile torej v preteklosti omejene na zelo
majhne sisteme in na mprvih 5 velikostnih redov v
naras¢anju viskoznosti [@]

Vseeno poskusamo z racunalniski orodji Studirati
steklaste sisteme. Prvi nacin je Studij povsem sin-
teticno (brez molekularne dinamike) konstruiranih
sistemov, ki v svoji strukturi posnemajo nekatere
lastnosti mikroskopske strukture stekel oz. snovi
blizu steklastega prehoda. Studije vklju¢ujejo npr.
model delcev z Lennard-Jonesovimi parskimi inte-
rakcijami, ki ga iz naklju¢no izbranega stanja mi-
nimiziramo v nek blizu dostopen energijski mini-
mum. Na tako atermalno pridobljenih strukturah
nato izvajamo analizo. V zadnjih letih se je izkaza-
lo, da so povezave med stekli in taksnimi atermal-
nimi sistemi globoke, a ne povsem direktne, in da je
v atermalnem primeru bolj smiselno govoriti o fiziki
zagozditev (ang. jamming) [25].

V zadnjih desetletjih se je zvrstilo veliko dela na
podrocju problema uspesne ekvilibracije stekel v si-
mulacijah. Da bi pokrili reprezentativen del fazne-
ga prostora, ki bi omogocal primerjavo z labora-
torijskimi eksperimenti, kjer se vzorci ekvilibrirajo

1Podobno kot eksperimenti v koloidnih steklih. Izziv

predstavljajo predvsem simulacije molekularnih stekel.



v casih sekund, minut in dni, je potrebno fizikalno
pocasno raziskovanje faznega prostora v taksnih ne-
ergodicénih sistemih znatno pospesiti. Nabor tehnik
je sirok [23], a v zadnjem ¢asu se je kot obetavna iz-
kazala razli¢ica Monte Carlo algoritma (ang. swap
Monte Carlo), ki standardne lokalne Metropolisov
premike modificira z dodatkom zamenjav med od-
daljenimi delci [24]. TakSen pristop se je s primerno
izbranimi potenciali in polidisperznostjo delcev iz-
kazal kot zelo obetaven, s pohitritvami ekvilibraci-
je do 10 velikostnih redov [26], kar odpira nadaljnje
moznosti za simulacijske studije pod pogoji, primer-
ljivimi z eksperimentalnimi.

5 Zakljucek

Studij steklastega prehoda v molekularnih steklih
ima dolgo in bogato zgodovino, a globoko razume-
vanje njegove fizike ostaja izmuzljivo [27]. Studij
koloidnih stekel je k razumevanju dodal fizikalni po-
jav z mnogo vzporednicami, ki pa je bolj dostopen
za eksperimentalne Studije, z moznostjo direktne-
ga vpogleda v mikroskopsko dogajanje. Tudi teori-
ja MCT je kljub zgoraj opisanem uspehu v razlagi
oblike F(q,t) Se vedno zelo pomanjkljiva. Napove-
dana kriti¢na temperatura T} je vi§ja od izmerjenih
oz. polnilno razmerje ¢5'°T ~ 0.52 je nizje od de-
janskega ¢, ~ 0.58, kar opozarja na manjkajoco
fiziko v tem opisu, predvsem pojav termalno aktivi-
ranih procesov, ki steklasti prehod zakasnijo glede
na MCT napoved [28]. Obstajajo in nastajajo tudi
druge teorija steklastega prehoda, npr. teorija na-
kljuénih faznih prehodov (ang. random first-order
transition theory), ki nadgrajuje MCT in inkorpo-
rira druge teoreticne pristope [I].

Poleg tega tudi analogija med koloidnimi in mo-
lekularnimi stekli ni popolna. Samo kot en primer
razlike, v eksperimentih s koloidnimi stekli pripra-
vijo lo¢ene vzorce z razlicnimi polnilnimi razmerji
(Stevilskimi gostotami), jih pretresajo in pustijo, da
kristalizirajo ali strdijo v steklasto stanje [[q, 6, 29,
30]. Kontrolni parameter ¢ se ne spreminja s ¢a-
som, kot se temperatura znizuje pri molekularnem
steklastem prehodu — v takih eksperimentih nima-
mo vsiljene ¢asovne skale, kot je hitrost ohlajanja
(ang. cooling rate) za molekularna stekla. Klasi¢-
ni eksperimenti steklastega prehoda za molekularna
stekla torej niso dostopni v koloidnih sistemih, kar
otezuje primerjavo.

Jasno je torej, da je na podrocju steklastega pre-
hoda odprtih Se mnogo vprasanj, tako eksperimen-
talnih kot teoreti¢nih. In c¢e je preteklost indikator,
bo studij koloidnih sistemov Se v naprej koristen
analog, ki bo tudi v nadaljnje ponujal bogat vpo-
gled v univerzalne lastnosti steklastega prehoda in
steklastih materialov.
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